Skip to main content
Log in

Mesozoic mafic alkaline magmatism of southern Scandinavia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

More than 100 volcanic necks in central Scania (southern Sweden) are the product of Jurassic continental rift-related mafic alkaline magmatism at the southwest margin of the Baltic Shield. They are mainly basanites, with rarer melanephelinites. Both rock groups display overlapping primitive Mg-numbers, Cr and Ni contents, steep chondrite-normalized rare earth element patterns (LaN /YbN = 17–27) and an overall enrichment in incompatible elements. However, the melanephelinites are more alkaline and have stronger high field strength element enrichment than the basanites. The existence of distinct primary magmas is also indicated by heterogeneity in highly incompatible element ratios (e.g. Zr/Nb, La/Nb). Trace element modelling indicates that the magmas were generated by comparably low degrees of melting of a heterogeneous mantle source. Such a source can best be explained by a metasomatic overprint of the mantle lithosphere by percolating evolved melts. The former existence of such alkaline trace element-enriched melts can be demonstrated by inversion of the trace element content of green-core clinopyroxenes and anorthoclase which occur as xenocrysts in the melanephelinites and are interpreted as being derived from crystallization of evolved mantle melts. Jurassic magmatic activity in Scania was coeval with the generation of nephelinites in the nearby Egersund Basin (Norwegian North Sea). Both Scanian and North Sea alkaline magmas share similar trace element characteristics. Mantle enrichment processes at the southwest margin of the Baltic Shield and the North Sea Basin generated trace element signatures similar to those of ocean island basalts (e.g. low Zr/Nb and La/Nb) but there are no indications of plume activity during the Mesozoic in this area. On the contrary, the short duration of rifting, absence of extensive lithospheric thinning, and low magma volumes argue against a Mesozoic mantle plume. It seems likely that the metasomatic imprint resulted from the earlier Permo-Carboniferous rifting episode which affected the entire study area and clearly was accompanied by plume activity (Ernst and Buchan in American Geophysical Union, pp 297–337, 1997). Renewed rifting in Jurassic times triggered decompression melting in the volatile-enriched lithospheric mantle and the alkaline melts generated inherited the earlier “stored” plume signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–f
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10a,b
Fig. 11
Fig. 12a,b
Fig. 13
Fig. 14a–c
Fig. 15

Similar content being viewed by others

References

  • Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a Pascal program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19(9):1333–1350

    Article  CAS  Google Scholar 

  • Andreasson PG, Rodhe A (1990) Geology of the Protogine zone south of Lake Vättern, southern Sweden: a reinterpretation. Geologiska Foereningen i Stockholm Foerhandlingar 112(2):107–125

    Google Scholar 

  • Anthony EY, Segalstad TV, Neumann ER (1989) An unusual mantle source region for nephelinites from the Oslo Rift, Norway. Geochimica et Cosmochimica Acta 53(5):1067–1076

    Article  CAS  Google Scholar 

  • Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam x-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200

    CAS  Google Scholar 

  • Augustsson C (2001) Lapilli tuff as evidence of early Jurassic Strombolian-type volcanism in Scania, southern Sweden. Geologiska Foereningen i Stockholm Foerhandlingar 123(1):23–28

    CAS  Google Scholar 

  • Berthelsen A (1992) From Precambrian to Variscan Europe. In: Blundell DJ, Freeman R, Mueller S (eds) A continent revealed: the European geotraverse. Cambridge University Press, Cambridge, pp 153–164

    Google Scholar 

  • Bizzarro M, Stevenson R (2003) Major element composition of the lithospheric mantle under the North Atlantic craton: evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland. Contrib Mineral Petrol 146(2):223–240

    Article  CAS  Google Scholar 

  • Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta 55(1):193–209

    Article  CAS  Google Scholar 

  • Bodinier JL, Merlet C, Bedini RM, Simien F, Remaidi M, Garrido CJ (1996) Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochimica et Cosmochimica Acta 60(3):545–550

    Article  CAS  Google Scholar 

  • Bogaard PJF, Wörner G (2003) Petrogenesis of Basanitic to Tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. J Petrol 44(3):569–602

    Article  CAS  Google Scholar 

  • Bölau E (1965) Der Tertiäre Vulkanismus in Zentralschonen (Südschweden). Acta Universitatis Lundensis Sectio II 1965(30):1–60

    Google Scholar 

  • Brooks CK, Printzlau I (1978) Magma mixing in mafic alkaline volcanic rocks: the evidence from relict phenocryst phases and other inclusions. J Volcanol Geothermal Res 4:315–331

    Article  CAS  Google Scholar 

  • Bylund G, Halvorsen E (1993) Palaeomagnetic study of Mesozoic basalts from Scania, southernmost Sweden. Geophys J Int 114(1):138–144

    Google Scholar 

  • Cebriá J-M, López-Ruiz J (1996) A refined method for trace element modelling of non-modal batch partial melting processes: the Cenozoic continental volcanism of Calatrava, central Spain. Geochimica et Cosmochimica Acta 60(8):1355–1366

    Article  Google Scholar 

  • Class C, Goldstein SL (1997) Plume-lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planetary Sci Lett 150(3–4):245–260

    Article  CAS  Google Scholar 

  • Dahlgren S (1994) Late Proterozoic and Carboniferous ultramafic magmatism of carbonatitic affinity in southern Norway. Lithos 31(3–4):141–154

    Article  CAS  Google Scholar 

  • David K, Schiano P, Allègre CJ (2000) Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth Planetary Sci Lett 178(3–4):285–301

    Article  CAS  Google Scholar 

  • Dixon JE, Fitton JG, Frost RTC (1981) The tectonic significance of post-Carboniferous igneous activity in the North-Sea basin. In: Illing LV, Hobson GD (eds) Petroleum geology of the continental shelf of North-West Europe. Heyden and Son, London, pp 121–137

    Google Scholar 

  • Erlström M, Thomas SA, Deeks N, Sivhed U (1997) Structure and tectonic evolution of the Tornquist zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area. Tectonophysics 271(3–4):191–215

    Article  Google Scholar 

  • Ernst RE, Buchan KL (1997) Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism, vol 100. American Geophysical Union, Washington, US, pp 297–333

  • Faerseth RB, Macintyre RM, Naterstad J (1976) Mesozoic alkaline dykes in the Sunnhordland region, western Norway: ages, geochemistry and regional significance. Lithos 9(4):331–345

    Article  CAS  Google Scholar 

  • Fall HG, Gibb FGF, Kanaris-Sotiriou R (1982) Jurassic volcanic rocks of the northern North Sea. J Geological Soc Lond 139(3):277–292

    CAS  Google Scholar 

  • Foley SF, Jenner GA (2004) Trace element partitioning in lamproitic magmas—the Gaussberg olivine leucitite. Lithos 75(1–2):19–38

    Article  CAS  Google Scholar 

  • Foley SF, Jackson SE, Fryer BJ, Greenough JD, Jenner GA (1996) Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochimica et Cosmochimica Acta 60(4):629–638

    Article  CAS  Google Scholar 

  • Foley SF, Musselwhite DS, van der Laan SR (1999) Melt compositions from ultramafic vein assemblages in the lithospheric mantle: a comparison of cratonic and non-cratonic settings. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the VIIth international kimberlite conference, 1. Red Roof Design, Cape Town, pp 238–246

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19(3):463–513

    CAS  Google Scholar 

  • Fujimaki H, Tatsumoto M, Aoki K (1984) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses, Part 2. J Geophys Res 89:662–672

    CAS  Google Scholar 

  • Furnes H, Elvsborg A, Malm OA (1982) Lower and Middle Jurassic alkaline magmatism in the Egersund Sub-Basin, North Sea. Mar Geol 46:53–69

    Article  CAS  Google Scholar 

  • Glaser SM, Foley SF, Günther D (1999) Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia. Lithos 48(1–4):263–285

    Article  CAS  Google Scholar 

  • Gorbatschev R, Lindh A, Solyom Z, Laitakari I, Aro K, Lobach ZSB, Markov MS, Ivliev AI, Brynhi I (1987) Mafic dyke swarms of the Baltic Shield. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms, vol 34. Geological Association of Canada, Toronto, pp 361–372

  • Guo JF, Green TH, O’Reilly SY (1992) Ba partitioning and the origin of anorthoclase megacrysts in basaltic rocks. Mineral Mag 56(382):101–107

    CAS  Google Scholar 

  • Hartmann G, Wedepohl KH (1990) Metasomatically altered peridotite xenoliths from the Hessian depression (Northwest Germany). Geochimica et Cosmochimica Acta 54(1):71–86

    Article  CAS  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385(16):219–229

    Article  CAS  Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planetary Sci Lett 79(1–2):33–45

    Article  CAS  Google Scholar 

  • Ionov DA, Hofmann AW (1995) Nb–Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planetary Sci Lett 131(3–4):341–356

    Article  CAS  Google Scholar 

  • Jenner GA (1996) Trace element geochemistry of igneous rocks: geochemical nomenclature and analytical geochemistry. In: Wyman D (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration, vol.12. Geological Association of Canada, St. John’s, pp 51–77

    Google Scholar 

  • Jung S, Hoernes S (2000) The major- and trace-element and isotope (Sr, Nd, O) geochemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhön area (central Germany): petrology, mantle source characteristics and implications for asthenosphere-lithosphere interactions. J Volcanol Geothermal Res 99(1–4):27–53

    Article  CAS  Google Scholar 

  • Klingspor I (1973) A preliminary report on the dating by the K/Ar method of a basalt neck at Göbnehall, southern Sweden. Geologiska Foereningen i Stockholm Foerhandlingar 95(2):287–289

    CAS  Google Scholar 

  • Klingspor I (1976) Radiometric age-determination of basalts, dolerites and related syenite in Skane, southern Sweden. Geologiska Foereningen i Stockholm Foerhandlingar 98(3):195–216

    Google Scholar 

  • Kunzmann T (1999) The aenigmatite–rhönite mineral group. Eur J Mineral 11(4):743–756

    CAS  Google Scholar 

  • La Tourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planetary Sci Lett 135(1–4):13–30

    Article  Google Scholar 

  • Larsen LM (1979) Distribution of REE and other trace elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar igneous province, South Greenland. Lithos 12(4):303–315

    Article  CAS  Google Scholar 

  • Latin D, Waters FG (1991) Melt generation during rifting in the North Sea. Nature 351(6327):559–562

    Article  CAS  Google Scholar 

  • Latin D, Waters FG (1992) Basaltic magmatism in the North Sea and its relationship to lithospheric extension. Tectonophysics 208(1–3):77–90

    Article  CAS  Google Scholar 

  • Latin DM, Dixon JE, Fitton JG (1990a) Rift-related magmatism in the North Sea Basin. In: Blundell DJ, Gibbs AD (eds) Tectonic evolution of the North Sea rifts, vol 181. Clarendon, Oxford, pp 101–144

  • Latin DM, Dixon JE, Fitton JG, White N (1990b) Mesozoic magmatic activity in the North Sea basin: implications for stretching history. In: Hardman RFP, Brooks J (eds) Tectonic events responsible for Britain’s oil and gas reserves, vol. 55. Geological Society of London, London, UK, pp 207–227

  • Le Bas MJ (1989) Nephelinitic and Basanitic rocks. J Petrol 30:1299–1312

    Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms: recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge, p 236

    Google Scholar 

  • Liboriussen J, Ashton P, Tygesen T (1987) The tectonic evolution of the Fennoscandian Border Zone in Denmark. Tectonophysics 137(1–4):21–29

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32(5):1021–1091

    CAS  Google Scholar 

  • Mogensen TE, Jensen LN (1994) Cretaceous subsidence and inversion along the Tornquist Zone from Kattegat to the Egersund basin. First Break 12(4):211–222

    Google Scholar 

  • Norin R (1933) Mineralogische und petrographische Studien an den Basalten Schonens. Geologiska Foereningen i Stockholm Foerhandlingar 55(1):101–149

    CAS  Google Scholar 

  • Norin R (1934) Zur Geologie der Südschwedischen Basalte, vol 57. University of Lund, Lund, p 174

  • Norling E, Bergström J (1987) Mesozoic and Cenozoic tectonic evolution of Scania, southern Sweden. Tectonophysics 137(1–4):7–19

    Article  Google Scholar 

  • Obst K (1999) Die permosilesischen Eruptivgänge innerhalb der Fennoskandischen Randzone (Schonen und Bornholm). Greifswalder Geowissenschaftliche Beiträge 7:5–121

    Google Scholar 

  • Obst K (2000) Permo-Carboniferous dyke magmatism on the Danish island Bornholm. N Jb Geol Paläont Abh 218(1–2):243–266

    Google Scholar 

  • Obst K, Rehfeldt T (2002) Mineral chemistry of mafic and ultramafic xenoliths from Jurassic basalts in southern Sweden. In: Abstracts of the 12th annual VM Goldschmidt conference, vol 66, issue 154, p 566

  • Olsson HB (1983) Rhönite from Skane (Scania), southern Sweden. Geologiska Foereningen i Stockholm Foerhandlingar 105(4):281–286

    CAS  Google Scholar 

  • Pedersen HA, Campillo M, Balling N (1994) Changes in the lithospheric structure across the Sorgenfrei–Tornquist Zone inferred from dispersion of Rayleigh waves. Earth Planetary Sci Lett 128(1–2):37–46

    Article  CAS  Google Scholar 

  • Pilet S, Hernandez J, Villemant B (2002) Evidence for high silicic melt circulation and metasomatic events in the mantle beneath alkaline provinces: the Na–Fe-augitic green-core pyroxenes in the Tertiary alkali basalts of the Cantal massif (French Massif Central). Mineral Petrol 76(1–2):39–62

    Article  CAS  Google Scholar 

  • Printzlau I, Larsen O (1972) K/Ar age determinations on alkaline olivine basalts from Skane, Southern Sweden. Geologiska Foereningen i Stockholm Foerhandlingar 94(2):259–269

    CAS  Google Scholar 

  • Ritchie JD, Swallow JL, Mitchell JG, Morton AC (1988) Jurassic ages from intrusives and extrusives within the Forties igneous province. Scott J Geol 24(1):81–88

    CAS  Google Scholar 

  • Sørensen K (1986) Danish basin subsidence by Triassic rifting on a lithosphere cooling background. Nature 319(6055):660–663

    Google Scholar 

  • Schnetzler CC, Philpotts JA (1970) Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts: II. Geochimica et Cosmochimica Acta 34(3):331–340

    Article  CAS  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34(2):237–243

    Article  CAS  Google Scholar 

  • Skulski T, Minarik WG, Watson EB (1994) High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chem Geol 117(1–4):127–147

    Article  CAS  Google Scholar 

  • Stormer JC (1973) Calcium zoning in olivine and its relationship to silica activity and pressure. Geochimica et Cosmochimica Acta 37:1815–1821

    Article  CAS  Google Scholar 

  • Sun S-S (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philos Trans R Soc 297:409–445

    CAS  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  • Sutherland FL, Hoskin PWO, Fanning CM, Coenraads RR (1998) Models of corundum origin from alkali basaltic terrains: a reappraisal. Contrib Mineral Petrol 133(4):356–372

    Article  Google Scholar 

  • Tappe S, Obst K, Solyom Z (2001) Geochemie und Genese der mesozoischen Schlotbasalte am SW-Rand des Fennoskandischen Schildes (Schonen, Schweden). Terra Nostra 5(01):65–68

    Google Scholar 

  • Thirlwall MF, Upton BGJ, Jenkins C (1994) Interaction between continental lithosphere and the Iceland plume: Sr–Nd–Pb isotope geochemistry of Tertiary basalts, NE Greenland. J Petrol 35(3):839–879

    CAS  Google Scholar 

  • Tiepolo M, Bottazzi P, Foley SF, Oberti R, Vannucci R, Zanetti A (2001) Fractionation of Nb and Ta from Zr and Hf at mantle depths: the role of titanian pargasite and kaersutite. J Petrol 42(1):221–232

    Article  CAS  Google Scholar 

  • Tralau H (1973) En palynologisk aldersbestaemning av vulkanisk aktivitet i Skane. Fauna Och Flora 68(4):121–125

    Google Scholar 

  • Upton BGJ, Hinton RW, Aspen P, Finch AA, Valley JW (1999) Megacrysts and associated xenoliths: evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland. J Petrol 40(6):935–956

    Article  CAS  Google Scholar 

  • Weaver BL (1991) Trace element evidence for the origin of ocean-island basalts. Geology 19(2):123–126

    Article  CAS  Google Scholar 

  • Weyer S, Münker C, Mezger K (2003) Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust–mantle system. Earth Planetary Sci Lett 205:309–324

    Article  CAS  Google Scholar 

  • Wikman H, Sivhed U (1993) Beskrivning till berggrundskartan Kristianstad SV. Sveriges Geologiska Undersoekning Serie Af 155:1–106

    Google Scholar 

  • Wikman H, Bergström J, Sivhed U (1993) Beskrivning till berggrundskartan Helsingborg SO. Sveriges Geologiska Undersoekning Serie Af 180:1–114

    Google Scholar 

  • Wilson M, Downes H (1991) Tertiary-Quaternary extension-related alkaline magmatism in western and central Europe. J Petrol 32(4):811–849

    CAS  Google Scholar 

  • Woodhall D, Knox RWOB (1979) Mesozoic volcanism in the northern North Sea and adjacent areas. Bull Geol Surv Great Britain 70:34–56

    CAS  Google Scholar 

  • Zack T, Foley SF, Jenner GA (1997) A consistent partition coefficient set for clinopyroxene, amphibole and garnet from laser ablation microprobe analysis of garnet pyroxenites from Kakanui, New Zealand. N Jb Miner Abh 172(1):23–41

    CAS  Google Scholar 

  • Ziegler PA (1990) Tectonic and palaeogeographic development of the North Sea rift system. In: Blundell DJ, Gibbs AD (eds) Tectonic evolution of the North Sea rifts. Clarendon, Oxford, pp 1–36

    Google Scholar 

Download references

Acknowledgements

This study is part of my diploma thesis completed at the Institute of Geological Sciences, University of Greifswald. Karsten Obst and Zoltan Solyom are thanked for logistical support and for resurrecting the study of Mesozoic volcanism in southern Scandinavia. George Jenner, Dejan Prelevic, Stephen Foley, Dorrit Jacob and Gerhard Wörner are thanked for helpful discussions. The final version of the manuscript has greatly benefited from thoughtful reviews and editorial advice from Hilary Downes, Lotte Larsen and Jochen Hoefs. Jürgen Eidam helped with the XRF analysis in Greifswald and Ulrich Siewers enabled the solution ICP-MS work in Hannover. Special thanks to Dorrit Jacob who ably assisted with the LAM-ICP-MS work in Greifswald. Stephen Foley financially supported the electron microprobe analyses in Göttingen, which were ably assisted by Andreas Kronz. A travel grant for field work was provided by DAAD (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Tappe.

Appendix

Appendix

Analytical techniques

Mineral chemistry

Mineral compositions were obtained using a JEOL JXA 8900 RL electron microprobe at the University of Göttingen. Operating voltage for silicates was 15 kV and the probe current was 15 nA. Opaque oxides were measured with 15 kV and 20 nA. The beam diameter varied between 1 and 10 μm dependent on both size and content of volatile elements in the crystal of interest. All the data were reduced with a CITZAF procedure (Armstrong 1995).

In-situ trace element analyses were performed with a laser ablation microprobe (LAM) in Greifswald which consists of a Q-switched Nd-YAG Merchantek UP-213 laser ablation system coupled to an Agilent 7500cs ICP-MS. Ablated material was carried in a continuous stream of argon to the ICP-MS. Mineral analyses were made using the frequency quadrupled laser output with a UV wavelength of 213 nm at a repetition rate of 10 Hz. Energy densities of 10 J/cm2 were adjusted and relatively large ablation craters were drilled (95 μm) to get sufficient signal for accurate quantification of a wide range of trace elements. Detection limits were calculated for individual analyses and approach values below 1 ppb. Calcium was used as an internal standard, with concentrations independently determined by electron microprobe analysis. The SRM NIST 612 and BCR2-G glasses were measured as international reference materials.

Whole-rock geochemistry

Major and selected trace elements were determined by X-ray fluorescence (XRF) spectrometry on fused discs at the University of Greifswald. A sequential wavelength-dispersive Philips PW2404 X-ray spectrometer was equipped with a single goniometer based measuring channel, covering the complete measuring range. Some samples were additionally analyzed by XRF in Lund and results agree within analytical error for all major elements. An in-house standard and international reference materials (BCR2 and BHVO1) have also been incorporated in our measurements. In addition, Fe+2/+3 was determined for selected samples by standard titration techniques in Lund. A wide range of trace elements and REE were measured by ICP-MS at the Federal Institute for Geosciences and Natural Resources in Hannover. Powders were dissolved in teflon bombs using a HF/HNO3 mixture (5 and 2 ml, respectively) and heated up to 170°C under pressure for 12 h. After slow cooling and further addition of HNO3 (2 ml) the digestions were evaporated to near dryness. The samples were taken up in 1 ml HNO3 and 1 ml HCl followed by dilution with 20–30 ml high purity H2O and heated again up to 170°C. Following cooling, samples were diluted to exactly 100 g using more water and Re and Rh were added as internal standards. These resulting solutions were analyzed on a Perkin–Elmer Elan 5000 inductively coupled plasma mass spectrometer using a cross-flow nebulizer. Calibration was achieved using matrix-matched international reference materials.

Comparison of trace elements determined by both the XRF and ICP-MS techniques (i.e. Ce, Y, Zr) was excellent and indicated no dissolution problems for the ICP-MS work. Typical estimates of precision and accuracy for these techniques are given in Jenner (1996).

Sample list

Sample list for Mesozoic mafic alkaline rocks from Scania

Sample ID

Rock type

Facies

Northinga

Eastinga

Location

CJBG 1

Basanite

Glassy

61990

13560

Lillö

CJBG 2

Basanite

Microcrystalline

62039

13598

Anneklev (Klevahill)

CJBG 3

Basanite

Microcrystalline

62077

13556

Ulfsberg (Bjäret)

CJBG 4

Melanephelinite

Microcrystalline

62095

13569

Hästhallarna

CJBG 6

Basanite

Glassy

62104

13661

Gunnarp (center)

CJBG 7

Basanite

Glassy

62102

13663

Gunnarp (south)

CJBG 8

Basanite

Glassy

62090

13670

Ebbarp

CJBG 12

Basanite

Glassy

62115

13675

Snababerg

CJBG 13

Basanite

Glassy

62109

13681

Skoghus

CJBG 14

Basanite

Glassy

62098

13679

Bolmarehus (Spragebjär)

CJBG 15

Basanite

Glassy

62106

13682

Lönnebjär

CJBG 16

Basanite

Glassy

62106

13684

Lönnebjär

CJBG 18

Basanite

Microcrystalline

62129

13668

Sösdala

CJBG 19

Basanite

Glassy

62120

13663

Sösdala (Eáof Ella)

CJBG 20

Basanite

Glassy

62087

13573

Stenkilstorp

CJBG 21

Melanephelinite

Microcrystalline

62096

13567

Hästhallarna

CJBG 22

Melanephelinite

Microcrystalline

62097

13568

Hästhallarna

CJBG 23

Basanite

Microcrystalline

62119

13581

Knösen

CJBG 24

Melanephelinite

Microcrystalline

62159

13607

Hagstad (Hagstadbjär)

CJBG 25

Melanephelinite

Glassy

62160

13610

Hagstad (Lilla Hagstad)

CJBG 26

Basanite

Microcrystalline

62098

13512

Allarpsberg

CJBG 27

Basanite

Glassy

62127

13554

Säte

CJBG 32

Melanephelinite

Microcrystalline

62121

13460

Jällabjär

CJBG 33

Melanephelinite

Microcrystalline

62118

13460

Jällabjär

CJBG 34

Melanephelinite

Microcrystalline

62113

13488

Billinge II

CJBG 35

Melanephelinite

Microcrystalline

62118

13483

Eneskogens gårdsgard

CJBG 37

Basanite

Microcrystalline

62131

13455

Randsliderna

CJBG 38

Melanephelinite

Glassy

62123

13462

Jällabjär

CJBG 39

Basanite

Microcrystalline

62204

13445

Juskushall

CJBG 40

Basanite

Glassy

62220

13461

Storaryd

CJBG 41

Basanite

Microcrystalline

62198

13376

Bonnarp

CJBG 42

Basanite

Microcrystalline

62140

13417

Rallate

CJBG 43

Melanephelinite

Microcrystalline

61976

13581

Bosjökloster

CJBG 44

Melanephelinite

Microcrystalline

62099

13567

Hästhallarna

CJBG 45

Basanite

Microcrystalline

62211

13714

Espet

CJBG 52

Basanite

Microcrystalline

62094

13696

Lunden

CJBG 54

Basanite

Microcrystalline

62171

13586

Holma

  1. aGauss-Krüger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tappe, S. Mesozoic mafic alkaline magmatism of southern Scandinavia. Contrib Mineral Petrol 148, 312–334 (2004). https://doi.org/10.1007/s00410-004-0606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0606-y

Keywords

Navigation