Skip to main content
Log in

Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present new whole rock trace element and Pb-isotope data for a suite of Neogene adakitic rocks that formed during the post-collisional stage of the India-Asia collision in an east-west- trending array along the Yalu Tsangpo suture. Compared to classic ‘adakites’ that form along certain active convergent plate margins, the Tibetan adakitic rocks show even stronger enrichment in incompatible elements (i.e. Rb, Ba, Th, K and LREEs) and even larger variation in radiogenic (Pb, Sr, Nd) isotope ratios. Tibetan adakitic rocks have extraordinarily low HREE (Yb: 0.34–0.61 ppm) and Y (3.71–6.79 ppm), high Sr/Y (66–196), high Dyn/Ybn and Lan/Ybn. They show strong evidence of binary mixing both in isotopic space (Sr-Nd, common Pb, thorogenic Pb) and trace element systematics. The majority of the adakitic rocks in south Tibet, including published and our new data, have variational Mg# (0.32–0.70), clear Nb (and HFSE) enrichment, the lowest initial 87Sr/86Sr and 206Pb/204Pb ratios, and the highest 144Nd/143Nd ratios of all Neogene volcanic rocks in south Tibet. These results indicate an involvement of slab melts in petrogenesis. Major and trace element characteristics of the isotopically more enriched adakites are compatible with derivation from subducted sediment but not with assimilation of crustal material. Thus, the south Tibetan adakitic magmas are inferred to have been derived from an upper mantle source metasomatised by slab-derived melts. An interesting observation is that temporally coeval and spatially related lamproites could be genetically related to the adakitic rocks in representing partial melts of distinct mantle domains metasomatised by subducted sediment. Our favoured geodynamic interpretation is that along-strike variation in south Tibetan post-collisional magma compositions may be related to release of slab melts and fluids along the former subduction zone resulting in compositionally distinct mantle domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Reference

  • Arnaud NO, Vidal P, Tapponnier P, Matte P, Deng WM (1992) The high K2O volcanism of northwestern Tibet: geochemistry and tectonic implications: Earth Planet Sci Lett 111:351–367

    Article  Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146

    Article  Google Scholar 

  • Beate B, Monzier M, Spikings R, Cotten J, Silva J, Bourdon E, Eissen JP (2001) Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center. Earth and Planet Sci Lett 192:561–570

    Article  Google Scholar 

  • Bourdon E, Eissen JP, Monzier M, Robin C, Matin H, Cotten J, Hall ML (2002) Adakite-like lavas from Antisana volcano (Ecuador): evidence for slab melt metasomatism beneath the Andean northern volcanic zone. J Petrol 43:199–217

    Article  Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Mineral-aqueous fluid partitioning of trace elements at 900C and 2.0 Gpa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59:3331–3350

    Article  Google Scholar 

  • Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Coulon C, Maluski H, Bollinger C, Wang S (1986) Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamic significance. Earth Planet Sci Lett 79:281–302

    Article  Google Scholar 

  • Davies JH, Stevenson DJ (1992) Physical model of source region of subduction zone volcanics. J Geophys Res 97:2037–2070

    Google Scholar 

  • DeCellers PG, Robinson DM, and Zandt G (2002) Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan plateau. Tectonics 21(6): 1062, DOI: 10.1029/2001 TC001322

  • Defant MJ, Drummond MS (1990) Drivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Ding L, Kapp P, Zhong DL, Deng WM (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1835–1865

    Article  Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: archean to modern comparisons. J Geophy Res 95:21503–21521

    Google Scholar 

  • Eisele J, Sharma M, Galer JGG, Blichert-Toft J, Devey CW, Hofmann AW (2002) The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett 196:197–212

    Article  Google Scholar 

  • Gao YF, Hou ZQ, Wei RH, Zhao RS (2003) Post-collisional adakitic porphyries in Tibet: geochemical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction. Acta Geologica Sinica 77:194–203

    Google Scholar 

  • Gao F, Hou ZQ, Kamber BS, Wei RH, Meng XS (2006) SiO2−rich lamproites from continental collision zones: evidence for recycling of subducted Tethyan oceanic sediments in southern Tibet. J Petrol (submitted)

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from Mt. Shasta region, N California. Contrib Mineral Petrol 142:375–396

    Google Scholar 

  • Grove TL, Elkin-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533

    Article  Google Scholar 

  • Grove TL, Baker MB, Price RC, Parman SW, Elkin-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148:542–565

    Article  Google Scholar 

  • Gutscher MA, Maury RC, Eissen JP, Bourdon E (2000) Can slab melting be caused by flat subduction? Geology 28:535–538

    Article  Google Scholar 

  • Harrision TM, Copeland P, Kidd WSF, Yin A (1992) Raising Tibet. Science 255:1663–1670

    Article  Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  Google Scholar 

  • Houseman GA, McKenzie DP, Molnar P (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res 86:6115–6132

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  • Kamber BS, Ewart A, Collerson KD, Bruce MC, McDonald GD (2002) Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib Mineral Petrol 144:38–56

    Google Scholar 

  • Kamber BS, Greig A, Schoenberg R, Collerson KD (2003) A refined solution to Earth’s hidden niobium: implications for evolution of continental crust and depth of core formation. Precamb Res 126:289–308

    Article  Google Scholar 

  • Kamber BS, Greig A, Collerson KD (2005) A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim Cosmochim Acta 69:1041–1058

    Article  Google Scholar 

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J Volcanol Geotherm Res 4:117–132

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Dunn T (1993) Relative depletion of niobium in some arc magmas and the continental crust: Partitioning of K, Nb, La, and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett 120:111–134

    Article  Google Scholar 

  • Kelemen PB, Yogodzinski GM and Scholl DW (2003) Along-strike variation in the Aleutian island arc: genesis of high Mg# andesite and implications for continental crust. In: Eiler, J. (ed) The Subduction Factory, Geophys Monogr 138, Am Geophys Union, Washington, pp. 223–246

  • Kohn M, Parkinson CD (2002) Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology 30:591–594

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A et al., (1989) A classification of igneous rocks and glossary of terms, Oxford: Blackwell

  • Mahéo G, Guillot S, Blichert-Toft J, Rolland Y, Pêcher A (2002) Slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth Plant Sci Lett 195:45–58

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Maury RC, Defant MJ, Joron JL (1992) Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature 360:661–663

    Article  Google Scholar 

  • Maury RC, Sajona FG, Pubellier M, Bellon H, Defant MJ (1996) Fusion de la croûte océnique dans les zones de subduction/collision récentes: I’exemple de Mindanao (Philippines). Bulletin de la Société Géologique de France 167:579–595

    Google Scholar 

  • Maury RC, Defant MJ, Bellon H, Jacques D, Joron JL, McDermotte F, Vidal P (1998) Temporal geochemical trends in northern Luzon arc lavas (Philippines): implications on metasomatic processes in the island arc mantle. Bulletin de la Société Géologique de France 169:69–80

    Google Scholar 

  • Meyer B, Tapponnier P, Bourjot LM, Etevier F, Gaudemer Y, Peltzer G, Guo S, Chen Z (1998) Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys J Int 135:1–47

    Article  Google Scholar 

  • Miller C, Schuster R., Klotzli U, Mair V, Frank W, Purtscheller F (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical, Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:1399–1424

    Article  Google Scholar 

  • Molnar P (1990) S-wave residuals from earthquakes in the Tibetan region and lateral variations in the upper mantle. Earth Planet Sci Lett 101:68–77

    Article  Google Scholar 

  • Molnar P, Tapponnier P (1978) Active tectonics of Tibet. J Geophys Res 83:5361–5374

    Article  Google Scholar 

  • Mo X, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ, Wang L (2003) Response of volcanism to the India-Asia collision (in Chinese with English abstract). Earth Sci Front 10(3):135–148

    Google Scholar 

  • Müentener O, Kelemen P, Grove TL (2001) The role of H2O during crystallisation of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Google Scholar 

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg: possible transition zone melts of Archaean subducted sediments. J Petrol 43:981–1001

    Article  Google Scholar 

  • Nomade S, Renne PR, Mo X, Zhao Z, Zhou S (2004) Miocene volcanism in the Lhasa block, Tibet: spatial trends and geodynamic implications. Earth Planet Sci Lett 221:227–243

    Article  Google Scholar 

  • Peacock SM, Rushmer T, Thompson AL (1994) Partial melting of subducted oceanic crust. Earth Planet Sci Lett 121:227–244

    Article  Google Scholar 

  • Pierce JA, Mei H (1988) Volcanic rocks of the 1985 Tibet Geotraverse Lhasa to Golmud. Phil Trans Roy Soc Lond A327:203–213

    Google Scholar 

  • Prouteau G, Scaillet B (2003) Experimental constraints on the origin of the 1991 Pinatubo dacite. J Petrol. 44:2203–2241

    Article  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Res 51:1–25

    Article  Google Scholar 

  • Rapp RP, Shimizu N (1995) Partitioning of REEs, Ti, Sc, Y, Cr and Zr between tonalitic-trondhjemitic-granitic melts and eclogite residue at 1–11 Gpa: ion microprobe analyses at natural abundance lavels. EOS Trans Am Geophys Union 76:296

    Google Scholar 

  • Sajona FG, Maury RC, Pubellier M, et al (2000) Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao(Philippines). Lithos 54:173–206

    Article  Google Scholar 

  • Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen JP, Cotten J (2005) Temporal evolution of magmatism in the northern volcanic zone of the Andes: the geology and petrology of Cayambe volcanic complex (Ecuador). J Petrol 46:2225–2252

    Article  Google Scholar 

  • Schiano P, Clocchiattl R, Shimizu N (1995) Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377:595–600

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implication for the origin of adakites. Contrib Mineral Petrol 117:394–409

    Article  Google Scholar 

  • Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone. Contrib Mineral Petrol 123:263–281

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Publ 42:313–345

    Article  Google Scholar 

  • Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang JS (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294:1671–1677

    Article  Google Scholar 

  • Tatsumi Y (1986) Formation of volcanic front in subduction zones. Geophys Res Lett 13:717–720

    Google Scholar 

  • Turner S, Hawkesworth C, Liu JQ, Rogers N, Kelley S, Calsteren PV (1993) Timing of Tibetan uplift constrained by analysis of volcanic rocks: Nature 364:50–54

    Article  Google Scholar 

  • Turner S, Arnaud N, Liu J, et al (1996) Post-collision, shoshonitic volcanism on the Tibetan plataeu: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37(1):45–71

    Google Scholar 

  • Williams H, Turner S, Kelley S, et al (2001) Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology 29(4):339–342

    Article  Google Scholar 

  • Williams HM, Turner SP, Pearce JA, Kelley SP, Harris NBW (2004) Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse element modeling. J Petrol 45:555–607

    Article  Google Scholar 

  • Yogodzinski GM, Kelemen PB (1998) Slab melting in the Aleutian: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth Planet Sci Lett 158:53–65

    Article  Google Scholar 

  • Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull 107:505–519

    Article  Google Scholar 

  • Yogodzinski GM, Less JM, Churikova TG, Dorendorf F, Worner G, Volynets ON (2001) Geochemical evidence for the melting of subdcting oceanic lithosphere at plate adges. Nature 409:500–504

    Article  Google Scholar 

  • Zhang SQ, Mahoney JJ, Mo XX, Ghazi AM, Milani L, Crawford AJ, Guo TY, Zhao ZD (2005) Evidence for a widespread Tethyan upper mantle with Indian-ocean-type isotopic characteristics. J Petrol 46:829–858

    Article  Google Scholar 

  • Zhao ZD, Mo X, Zhang SQ, Guo TY, Zhou S, Dong GC, Wang Y (2001) Post-collisional magmatism in Wuyu basin, central Tibet: evidence for recycling of subducted Tethyan oceanic crust. Sci China (D) 44(Supp.):27–34

    Google Scholar 

Download references

Acknowledgments

This project was supported financially by the Major State Basic Research Program of People’s Republic of China (2002 CB 412600). We thank Richard Carlson and Othmar Müntener for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Gao.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Hou, Z., Kamber, B.S. et al. Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contrib Mineral Petrol 153, 105–120 (2007). https://doi.org/10.1007/s00410-006-0137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0137-9

Keywords

Navigation