Skip to main content
Log in

The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

More than ca 100 km3 of nearly homogeneous crystal-poor phonolite and ca 100 km3 of slightly zoned trachyte were erupted 39 ka during the Campanian Ignimbrite super eruption, the most powerful in the Neapolitan area. Partition coefficient calculations, equilibrium mineral assemblages, glass compositions and texture were used to reconstruct compositional, thermal and pressure gradients in the pre-eruptive reservoir as well as timing and mechanisms of evolution towards magma chamber overpressure and eruption. Our petrologic data indicate that a wide sill-like trachytic magma chamber was active under the Campanian Plain at 2.5 kbar before CI eruption. Thermal exchange between high liquidus (1199°C) trachytic sill and cool country rocks caused intense undercooling, driving a catastrophic and fast (102 years) in situ fractional crystallization and crustal assimilation that produced a water oversaturated phonolitic cap and an overpressure in the chamber that triggered the super eruption. This process culminated in an abrupt reservoir opening and in a fast single-step high decompression. Sanidine phenocrysts crystal size distributions reveal high differentiation rate, thus suggesting that such a sill-like magmatic system is capable of evolving in a very short time and erupting suddenly with only short-term warning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1131

    Google Scholar 

  • Auger E, Gasparini P, Virieux J, Zollo A (2001) Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294:1510–1512

    Article  Google Scholar 

  • Bachmann O, Bergantz GV (2003) Rejuvenation of the Fish Canyon magma body: a window into the evolution of large-volume silicic magma system. Geology 31:789–792

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Article  Google Scholar 

  • Barberi F, Innocenti F, Lirer L, Munno R, Pescatore TS, Santacroce R (1978) The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan Area (Italy). Bull Volcanol 41(1):10–22

    Article  Google Scholar 

  • Blower JD, Keating JP, Mader HM, Phillips JC (2001) Inferring volcanic degassing processes from vesicle size distributions. Geophys Res Lett 28:347–350

    Article  Google Scholar 

  • Bohrson WA, Spera FJ, Fowler SJ, Belkin HE, De Vivo B., Rolandi G (2006) Petrogenesis of the Campanian Ignimbrite: implications for crystal-melt separation and open-system processes from major and trace elements and Th (?) isotopic data. In: De Vivo B (ed) Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Developments in Volcanology 9, pp 249–288

  • Bowen NL (1928) The evolution of igneous rocks. Dover, New York, p 332

    Google Scholar 

  • Brophy JG, Dreher ST (2000) The origin of composition gaps at South Sister Volcano, Central Oregon: implications for fractional crystallization processes beneath active calc-alkaline volcanoes. J Volcanol Geotherm Res 102:287–307

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Carroll MR, Blank J (1997) Solubility of water in phonolitic melts. Am Mineral 82:1111–1115

    Google Scholar 

  • Cashman KV (1992) Groundmass crystallization of Mount St. Helens dacite, 1980–1986: a tool for interpretation shallow magmatic processes. Contrib Mineral Petrol 109:431–449

    Article  Google Scholar 

  • Cashman KV, McConnell SM (2005) Multiple levels of magma storage during the 1980 summer eruptions of Mount St. Helens, WA. Bull Volcanol 68:57–75

    Article  Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes - The Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219

    Article  Google Scholar 

  • Cornell W, Carey S, Sigurdsson H (1983) Computer simulation of transport and deposition of the Campanian Y-5 Ash. In: Sheridan MF, Barberi F (eds) Explosive volcanism. Elsevier, Amsterdam, pp 89–109

    Google Scholar 

  • Couch S (2003) Experimental investigation of crystallization kinetics in a haplogranite system. Am Mineral 88:1471–1485

    Google Scholar 

  • De Campos CP, Dingwell DB, Fehr KT (2004) Decoupled convection cells from mixing experiments with alkaline melts from Phlegrean Fields. Chem Geol 213:227–251

    Article  Google Scholar 

  • De Natale G, Troise C, Pingue F, Mastrolorenzo G, Pappalardo L, Battaglia M, Boschi E (2006) The Campi Flegrei Caldera: unrest mechanisms and hazards. In: Troise C, De Natale G, Kilburn CRJ (eds) Mechanisms of activity and unrest at large calderas. Geological Society, London, Special Publications 269:25–45

  • De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson W, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineral Petrol 73:47–65

    Article  Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan yellow tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170

    Article  Google Scholar 

  • Di Girolamo P (1970) Differenziazione gravitativa e curve isochimiche nella “Ignimbrite Campana” (Tufo Grigio Campano auct.). Rend Soc Ital Mineral Petrol 26:1–45

    Google Scholar 

  • Di Girolamo P, Ghiara MR, Lirer L, Munno R, Rolandi G, Stanzione D (1984) Vulcanologia e petrologia dei Campi Flegrei. Boll Soc Geol Ital 103:349–413

    Google Scholar 

  • Di Matteo V, Carroll MR, Beherens H, Vetere F, Brooker RA (2004) Water solubility in trachytic melts. Chem Geol 213:187–196

    Article  Google Scholar 

  • Dvorak JJ, Mastrolorenzo G (1991) History of vertical movement in Pozzuoli Bay, Southern Italy: the result of regional extension related to evolution of the Tyrrhenian Sea and of local volcanic activity. Am Spec pap 263, p 47

  • Fedele F, Giaccio B, Isaia R, Orsi G (2002) Ecosystem impact of the Campanian Ignimbrite eruption in Late Pleistocene Europe. Quat Res 57:420–424

    Article  Google Scholar 

  • Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow—emplacement of the Campanian Ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220

    Article  Google Scholar 

  • Folch A, Codina R, Martì J (2001) Numerical modeling of magma withdrawal during explosive caldera-forming eruptions. J Geophys Res 106:16163–16175

    Article  Google Scholar 

  • Fowler SJ, Spera FJ, Bohrson WA, Belkin HE, De Vivo B (2007) Phase equilibria constraints on the chemical and physical evolution of the Campanian Ignimbrite. J Petrol 48:459–493

    Article  Google Scholar 

  • Francalanci L, Peccerillo A, Poli G (1987) Partition coefficients for minerals in potassium-alkaline rocks: data from Roman province (Central Italy). Geochem J 21:10

    Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modelling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Gardner JEand Denis M-H (2004) Heterogeneous bubble nucleation on Fe–Ti oxide crystals in high-silica rhyolitic melts. Geochim Cosmochim Acta 68:3587–3597

    Article  Google Scholar 

  • Gardner JE, Hilton M, Carroll MR (1999) Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet Sci Lett 168:201–218

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Hammer JE, Cashman KV, Hoblit RP, Newman S (1999) Degassing and microlite crystallization during pre-climatic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380

    Article  Google Scholar 

  • Hawkeswort CJ, Blake S, Evans P, Hughes R, Macdonald R, Thomas LE, Turner SP, Zellmer G (2000) Time scales of crystal fractionation in magma chambers—integrating physical, isotopic and geochemical perspectives. J Petrol 41:991–1006

    Article  Google Scholar 

  • Higgins MD (1996a) Magma dynamics beneath Kameni volcano, Greece, as revealed by crystal size and shape measurements. J Volcanol Geotherm Res 70:37–48

    Article  Google Scholar 

  • Higgins MD (1996b) Crystal size distributions and other quantitative textural measurements in lavas and tuff from Mt Taranaki (Egmont volcano), New Zealand. Bull Volcanol 58:194–204

    Article  Google Scholar 

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116

    Google Scholar 

  • Higgins MD (2002) Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. Am Mineral 87:171–175

    Google Scholar 

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48:951–999

    Article  Google Scholar 

  • Improta L, Corciulo M (2006) Controlled source nonlinear tomography: a powerful tool to constrain tectonic models of the Southern Apennines orogenic wedge, Italy. Geology 34:941–944

    Article  Google Scholar 

  • Jaupart C, Allegre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102:413–29

    Article  Google Scholar 

  • Johnston-Lavis HF (1889) Report of the committee appointed for the investigation of the volcanic phenomena of Vesuvius and its neighbourough. Royal Society, London

    Google Scholar 

  • Klug C, Cashman KV (1994) Vesiculation of May 18, 1980 Mount St. Helens magma Geology 22:468–472

    Article  Google Scholar 

  • Larsen J, Gardner J (2004) Experimental study of water degassing from phonolite melts: implications for volatile oversaturation during magmatic ascent. J Volcanol Geotherm Res 134:109–124

    Article  Google Scholar 

  • Lemarchand F, Villemant B, Calas G (1987) Trace element distribution coefficients in alkaline series. Geochim Cosmochim Acta 51:1071–1081

    Article  Google Scholar 

  • Lirer L, Luongo G, Scandone R (1987) On the volcanological evolution of Campi Flegrei. EOS. Trans Am Geophys Union 68:226–234

    Google Scholar 

  • Mangan MT, Mastin LG, Sisson T (2004) Gas evolution in eruptive conduits: combining insights from high temperature and pressure decompression experiments with steady-state flow modeling. J Volcanol Geotherm Res 129:23–36

    Article  Google Scholar 

  • Mangan MT, Sisson T (2000) Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet Sci Lett 183:441–455

    Article  Google Scholar 

  • Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 34:937–940

    Article  Google Scholar 

  • Marsh B (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contrib Mineral Petrol 99:277–291

    Article  Google Scholar 

  • Marsh BD (2002) On bimodal differentiation by solidification front instability in basaltic magmas, part 1: basic mechanism. Geochim Cosmochim Acta 66:2211–2299

    Article  Google Scholar 

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on earth. Bull Volcan 66:735–748

    Article  Google Scholar 

  • Mastrolorenzo G, Pappalardo L (2006) Magma degassing and crystallization processes during eruptions of high-risk Neapolitan volcanoes: evidence of common equilibrium rising processes in alkaline magmas. Earth Planet Sci Lett 250:164–181

    Article  Google Scholar 

  • McBirney AR, Baker BH, Nilson RH (1985) Liquid fractionation: I. Basis principles and experimental simulations. J Volcanol Geotherm Res 24:l–24

    Google Scholar 

  • McCoy FW, Cornell W (1990) Volcaniclastic sediments in the Tyrrhenian Basin. Proc Ocean Drill Program 107:291–306

    Google Scholar 

  • Michaut C, Jaupart C (2006) Ultra-rapid formation of large volumes of evolved magma. Earth Planet Sci Lett 250:38–52

    Article  Google Scholar 

  • Melnik O, Barmin AA, Sparks RSJ (2005) Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J Volcanol Geothem Res 143:53–68

    Article  Google Scholar 

  • Morgan DJ, Blake S and Rogers NW (2003) Crystallization rate and residence times of sanidine phenocrysts in the AD 472 (Pollena) eruption of Vesuvius. Geophysical Research Abstracts, Vol 5, 09352, European Geophysical Society 2003

  • Morgan DJ, Blake S, Rogers NW, De Vivo B, Rolandi G, Davidson JP (2006) Magma chamber recharge at Vesuvius in the century prior to the eruption of ad 79 Geology 34:845–848

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  • Mourtada-Bonnefoi CC, Laporte D (2004) Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet Sci Lett 218:521–537

    Article  Google Scholar 

  • Nimis P (1999) Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib Mineral Petrol 135:62–74

    Article  Google Scholar 

  • Ort M, Orsi G, Pappalardo L, Fisher RV (2003) Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy. Bull Volcanol 65:55–72

    Google Scholar 

  • Pappalardo L (1994) Chemostratigrafia del deposito dell’Ignimbrite Campana, PhD thesis

  • Pappalardo L, Civetta L, de Vita S, Di Vito MA, Orsi G, Carandente A, Fisher RV (2002)a Timing of magma extraction during the Campanian Ignimbrite eruption (Campi Flegrei caldera). J Volcanol Geotherm Res 114:479–497

    Article  Google Scholar 

  • Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R, (2002)b Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J Petrol 43:1415–1434

    Article  Google Scholar 

  • Proussevitch A, Sahagian DL, (2005), Bubbledrive-1: A numerical model of volcanic eruption mechanisms driven by disequilibrium magma degassing. J Volcanol Geotherm Res 143:89–111

    Article  Google Scholar 

  • Rampino MR, Self S (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359:50–52

    Article  Google Scholar 

  • Rosi M, Sbrana A (1987) Phlegrean Fields. CNR, Quaderni de “La Ricerca Scientifica” 114:1–175

  • Scacchi A (1887) Catalogo dei minerali vesuviani con la notizia della loro composizione e del loro giacimento. Lo Spettatore del Vesuvio e dei Campi Flegrei 65–75

  • Scandone R, Bellucci F, Lirer L, Rolandi G (1991) The structure of the Campanian Plain and the activity of Neapolitan volcanoes. J Volcanol Geotherm Res 48:1–31

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Ottolini L, Sbrana A (2004) The relationship between potassic, calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: a melt inclusion approach. Earth Planet Sci Lett 220:121–137

    Article  Google Scholar 

  • Seymour St. KChristanis K, Bouzinos A, Papazisimou S, Papatheodorou G, Moran E, Denes G (2004) Tephrostratigraphy and tephrochronology in the Philippi peat basin, Macedonia, Northern Hellas (Greece). Quat Int 121:53–65

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220

    Article  Google Scholar 

  • Spera FJ, Bohrson W (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J Petrol 42(5):999–1018

    Article  Google Scholar 

  • Spera FJ, Oldenburg CM, Christiensen C, Todesco M (1995) Simulations of convection with crystallization in the system KAlSi2O6–CaMgSi2O6: implications for compositionally zoned magma bodies. Am Mineral 40:1188–1207

    Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Spec Pub Geol Soc, London 42:313–346

  • Thunell R, Federman A, Sparks S, Williams D (1979) The age, origin and volcanological significance of the Y-5 ash layer in the Mediterranean. Quat Res 12:241–252

    Article  Google Scholar 

  • Ton-That T, Singer B, Paterne M (2001) 40Ar/39Ar dating of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth Planet Sci Lett 184:645–658

    Article  Google Scholar 

  • Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154:303–316

    Article  Google Scholar 

  • Turner S, George R, Jerram DA, Carpenter N, Hawkesworth C (2003) Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the lesser Antilles, and a model to reconcile discordant age information. Earth Planet Sci Lett 214:279–294

    Article  Google Scholar 

  • Turner SP, George RMM, Evans PJ, Hawkesworth CJ, Zellmer GF (2000) Time scales of magma formation, ascent and storage beneath subduction zone volcanoes. Philos Trans R Soc Lond A 358:1443–1464

    Article  Google Scholar 

  • Villemant B (1988) Trace element evolution in the Phlegraean Fields (Central Italy): fractional crystallization and selective enrichment. Contrib Mineral Petrol 98:169–183

    Article  Google Scholar 

  • Vollmer R, Johnston K, Ghiara MR, Lirer L, Munno R (1981) Sr-isotope geochemistry of megacrysts from continental rift and converging plate margin alkaline volcanism in South Italy. J Volcanol Geotherm Res 11:317–327

    Article  Google Scholar 

  • Webster JD, Raia R, Tappen C, De Vivo B (2003) Pre–eruptive geochemistry of the ignimbrite-forming magmas of the Campanian Volcanic Zone, Southern Italy, determined from silicate melt inclusions. Mineral Petrol 79:99–125

    Article  Google Scholar 

  • Wholetz K, Civetta L, Orsi G (1999) Thermal evolution of the Phlegraean magmatic system. J Volcanol Geotherm Res 91:381–414

    Article  Google Scholar 

  • Wörner G, Beusen JM, Duchateau N, Gijbels R, Schmincke HU (1983) Trace element abundance and mineral/melt distribution coefficients in phonolites from the Laacher See Volcano (Germany). Contrib Mineral Petrol 84:152–173

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank M. Serracino (CNR-IGAG, Rome) for the kind assistance during the electron microprobe analyses. We are thankful to G. Della Ventura (Università “Roma Tre”, Rome, Italy) for his help during the FT-IR analyses. The comments and suggestions of two anonymous referees are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Pappalardo.

Additional information

Communicted by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappalardo, L., Ottolini, L. & Mastrolorenzo, G. The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib Mineral Petrol 156, 1–26 (2008). https://doi.org/10.1007/s00410-007-0270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0270-0

Keywords

Navigation