Skip to main content
Log in

A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelmoula M, Trolard F, Bourrié G, Génin J-MR (1998) Evidence for the Fe(II)-Fe(III) green rust “Fougerite” mineral occurrence in a hydromorphic soil and its transformation with depth. Hyperfine Interact 112:235–238. doi:10.1023/A:1010802508927

    Article  Google Scholar 

  • Andreozzi GB, Ottolini L, Lucchesi S, Graziani G, Russo U (2000) Crystal chemistry of the axinite-group minerals: a multi-analytical approach. Am Mineral 85:698–706

    Google Scholar 

  • Bargar JR, Tebo BM, Villinski JE (2000) In situ characterization of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG–1. Geochim Cosmochim Acta 64(16):2775–2778. doi:10.1016/S0016-7037(00)00368-9

    Article  Google Scholar 

  • Baron V, Gutzmer J, Rundlof H, Tellgren R (1998) The influence of iron substitution on the magnetic properties of hausmannite, Mn(Fe, Mn)2O4. Am Mineral 83:786–793

    Google Scholar 

  • Belli M, Scafati A, Bianconi A, Mobilio S, Palladino L, Reale A et al (1980) X-ray absorption near edge structures (XANES) in simple and complex Mn compounds. Solid State Commun 35:355–361. doi:10.1016/0038-1098(80)90515-3

    Article  Google Scholar 

  • Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725

    Article  Google Scholar 

  • Bonazzi P, Garbarino C, Menchetti S (1992) Crystal chemistry of piemontites: REE-bearing piemontite from Monte Brugiana, Alpi Apuane, Italy. Eur J Mineral 4:23–33

    Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, Cambridge, 551 p

  • Calas G (1984) Electron paramagnetic resonance. Rev Mineral 18:513–571

    Google Scholar 

  • Chalmin E, Vignaud C, Salomon H, Farges F, Susini J, Menu M (2006) Minerals discovered in paleolithic black pigments by transmission electron microscopy and micro-X-ray absorption near-edge structure. Appl Phys A 83(2):213–218. doi:10.1007/s00339-006-3510-7

    Article  Google Scholar 

  • Chukhrov FV, Gorshkov AI, Vitovskaya IV, Drits VA, Sivtsov AI, Dikov YP (1980a) Crystallochemical nature of Co–Ni asbolane. Izv Akad Nauk SSSR Ser Geol 6:73–81

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Vitovskaya IV, Drits VA, Sivtsov AV (1980b) Crystallochemical nature of Ni-asbolane. Izv Akad Nauk SSSR Ser Geol 9:108–120

    Google Scholar 

  • Dräger G, Frahm R, Materlik G, Brummer O (1988) On the multipole character of the X-ray transitions in the pre-edge structure of Fe K absorption spectra. Phys Status Solid B 146:287–293. doi:10.1002/pssb.2221460130

    Article  Google Scholar 

  • Dräger G, Kirchner T, Bocharov S, Kao CC (2001) Spin-resolved NEXAFS from resonant X-ray scattering (RXS). J Synchrotron Radiat 8:398–400. doi:10.1107/S0909049500017234

    Article  Google Scholar 

  • Drits VA, Silvester EJ, Gorshkov AI, Manceau A (1997) The structure of monoclinic Na-rich birnessite and hexagonal birnessite. Part 1. Results from X ray diffraction and selected area electron diffraction. Am Mineral 82:946–961

    Google Scholar 

  • Drits VA, Lanson B, Bougerol-Chaillout C, Gorshkov AI, Manceau A (2002) Structure of heavy-metal sorbed birnessite: part 2. Results from electron diffraction. Am Mineral 87:1646–1661

    Google Scholar 

  • Farges F (2005) Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials. Phys Rev B 71:155109. doi:10.1103/PhysRevB.71.155109

    Article  Google Scholar 

  • Farges F (2008) Chromium speciation in oxide-type compounds. Application to minerals, gems, aqueous solutions and silicate glasses. Phys Chem Miner (in press)

  • Farges F, Brown GE Jr, Rehr JJ (1996) Coordination chemistry of Ti(IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds. Geochim Cosmochim Acta 60:3023–3038. doi:10.1016/0016-7037(96)00144-5

    Article  Google Scholar 

  • Farges F, Brown GE Jr, Rehr JJ (1997) Ti K-edge XANES studies of Ti-coordination and disorder in oxide compounds: comparison between theory and experiment. Phys Rev B 56:1809–1819. doi:10.1103/PhysRevB.56.1809

    Article  Google Scholar 

  • Farges F, Brown GE Jr, Petit PE, Munoz M (2001) Transition elements in water-bearing silicate glasses/melts. Part I. A high-resolution and anharmonic analysis of Ni coordination environments in crystals, glasses, and melts. Geochim Cosmochim Acta 65(10):1665–1678

    Article  Google Scholar 

  • Farges F, Lefrère Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. J Non Cryst Solids 344(3):176–188. doi:10.1016/j.jnoncrysol.2004.07.050

    Article  Google Scholar 

  • Farges F, Chalmin E, Vignaud C, Pallot-Frossard I, Susini J, Bargar J et al (2005) Archeological applications of XAFS: prehistorical paintings and medieval glasses. Phys Scr T115:885–887. doi:10.1088/0031-8949/2005/T115/264

    Article  Google Scholar 

  • Fialin M, Bézos A, Wagner C, Magnien V, Humler E (2004) Quantitative electron microprobe analysis of Fe3+/∑Fe: basic concepts and experimental protocol for glasses. Am Mineral 89:654–662

    Google Scholar 

  • Gaillot AC, Flot D, Drits VA, Manceau A, Burghammer M, Lanson B (2003) Structure of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO4. Chem Mater 15:4666–4678. doi:10.1021/cm021733g

    Article  Google Scholar 

  • Gaillot AC, Drits VA, Manceau A, Lanson B (2007) Structure of synthetic K-rich phyllomanganate birnessite obtained by high-temperature decomposition of KMnO4 substructures of K-rich birnessite from 1000°C experiment. Microporous Mesoporous Mater 98(1–3):267–282. doi:10.1016/j.micromeso.2006.09.010

    Article  Google Scholar 

  • Garvie LAJ, Craven AJ, Brydson R (1994) Use of electron-energy loss near-edge fine structure in the study of minerals. Am Mineral 79:411–425

    Google Scholar 

  • Gilbert B, Frazer BH, Belz A, Conrad PG, Nealson KH, Haskel D et al (2003) Multiple scattering calculations of the bonding and X-ray absorption spectroscopy of manganese oxides. J Phys Chem 107:2839–2847

    Google Scholar 

  • Glatzel P, Bergmann U (2005) High resolution 1 s core hole X-ray spectroscopy in 3d transition metals complexes—electronic and structural information. Coord Chem Rev 249:65–95. doi:10.1016/j.ccr.2004.04.011

    Article  Google Scholar 

  • Glatzel P, Bergmann U, Yano J, Visser H, Robblee JH, Gu W et al (2004) The electronic structure of Mn in oxides, coordination complexes, and the oxygen-evolving complex of photosystem II studied by resonant inelastic scattering. J Am Chem Soc 126:9946–9959. doi:10.1021/ja038579z

    Article  Google Scholar 

  • Glatzel P, Yano J, Bergmann U, Visser H, Robblee JH, Gu W et al (2005) Resonant inelastic X-ray scattering (RIXS) spectroscopy at the Mn K absorption pre-edge—a direct probe of the 3d orbitals. J Phys Chem Solids 66(12):2163–2167. doi:10.1016/j.jpcs.2005.09.012

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, Oxford, 1542 p

  • de Groot F (2001) XAFS theory and analysis of 3d transition metal compounds. Chem Rev 101:1779–1808. doi:10.1021/cr9900681

    Article  Google Scholar 

  • Guest CA, Schulze DG, Thompson IA, Huber DM (2002) Correlating manganese X-ray absorption near-edge structure spectra with extractable soil manganese. Soil Sci Soc Am J 66:1172–1181

    Google Scholar 

  • Haskel D (1999) The FLUO package. http://www.aps.anl.gov/xfd/people/haskel

  • Heumann D, Dräger G, Bocharov S (1997) Angular-dependence in the K pre-edge XANES of cubic crystals: the separation of the empty metal eg and t2 g states of NiO and FeO. J Phys IV 7(C2):481–483

    Article  Google Scholar 

  • Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA et al (2005) Spectroscopic study of Fe(II) in silicate glasses: implications for the coordination environment of Fe(II) in anhydrous silicate melts of geochemical interest. Geochim Cosmochim Acta 69:4315–4332. doi:10.1016/j.gca.2005.01.008

    Article  Google Scholar 

  • Kudo H, Miura H, Hariya Y (1990) Tetragonal monoclinic transformation of cryptomelane at high temperature. Min J 15:50–63. doi:10.2465/minerj.15.50

    Article  Google Scholar 

  • Lanson B, Drits VA, Gaillot A-C, Silvester E, Plançon A, Manceau A (2002) Structure of heavy-metal sorbed birnessite: part 1. Results from X-ray diffraction. Am Mineral 87:1631–1645

    Google Scholar 

  • Manceau A, Llorca S, Calas G (1987) Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochim Cosmochim Acta 51:105–113. doi:10.1016/0016-7037(87)90011-1

    Article  Google Scholar 

  • Manceau A, Gorshkov A, Drits V (1992a) Structural chemistry of Mn, Fe, Co and Ni in manganese hydrous oxides: part I. Information from XANES spectroscopy. Am Mineral 77:1133–1143

    Google Scholar 

  • Manceau A, Gorshkov A, Drits V (1992b) Structural chemistry of Mn, Fe, Co and Ni in manganese hydrous oxides: Part II: Information from EXAFS spectroscopy and electron and X-ray diffraction. Am Mineral 77:1144–1157

    Google Scholar 

  • Manceau A, Schlegel ML, Musso M, Sole VA, Gauthier C, Petit PE et al (2000) Crystal chemistry of trace elements in natural and synthetic goethite. Geochim Cosmochim Acta 64:3643–3661. doi:10.1016/S0016-7037(00)00427-0

    Article  Google Scholar 

  • Manceau A, Lanson B, Drits VA (2002) Structure of heavy metal sorbed birnessite. Part 3. Results from powder and polarized EXAFS spectroscopy. Geochim Cosmochim Acta 66:2639–2663. doi:10.1016/S0016-7037(02)00869-4

    Article  Google Scholar 

  • Manning PG (1970) Racah parameters and their relationships to lengths and covalencies of Mn2+ and Fe3+ oxygen bonds in silicates. Can Mineral 10:677–687

    Google Scholar 

  • Manning PG (1973) Effect of second-nearest-neighbour interactions on Mn3+ absorption in pink and black tourmalines. Can Mineral 11:971–977

    Google Scholar 

  • Marcus MA, Manceau A, Kersten M (2004) Mn, Fe, Zn and As speciation in a fast growing ferromanganese marine nodule. Geochim Cosmochim Acta 68:3125–3136. doi:10.1016/j.gca.2004.01.015

    Article  Google Scholar 

  • McKeown DA, Post JE (2001) Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. Am Mineral 86:701–713

    Google Scholar 

  • McKeown DA, Kot KK, Gan H, Pegg IL (2003) X-ray absorption studies of manganese valence and local environment in borosilicate waste glasses. J Non Cryst Solids 328:71–89. doi:10.1016/S0022-3093(03)00482-4

    Article  Google Scholar 

  • Nietubyc R, Sobczak E, Attenkofer KE (2001) X-ray absorption fine structure of manganese compounds. J Alloy Comp 328:126–131. doi:10.1016/S0925-8388(01)01332-9

    Article  Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  • Oberti R, Hawtorne FC, Ungaretti L, Cannillo E (1993) A crystal chemical re-evaluation of amphibole/melt and amphibole/clinopyroxene DTi values in petrogenetic studies. Eur J Mineral 5:43–51

    Google Scholar 

  • Pabst A (1943) Crystal structure of gillespite, BaFeSi4O10. Am Mineral 28:372–390

    Google Scholar 

  • Papin A (2001) Etude expérimentale et spectroscopique de la cristallochimie du manganèse dans les silicates hydroxylés. Ph.D. thesis, Université d’Orléans, 191 p (in French; full text available at: http://tel.ccsd.cnrs.fr/documents/archives0/00/00/17/66/tel-00001766-00/tel-00001766.pdf)

  • Petrie LM (1999) Manganese. In: Marshall CP, Fairbridge RW (eds) Encyclopedia of geochemistry. Kluwer Academic, Dordrecht, pp 382–384

    Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447–3454. doi:10.1073/pnas.96.7.3447

    Article  Google Scholar 

  • Post JE, Appleman DE (1994) Crystal structure refinement of lithiophorite. Am Mineral 79:370–374

    Google Scholar 

  • Post JE, Bish DL (1988) Rietveld refinement of the todorokite structure. Am Mineral 73:861–869

    Google Scholar 

  • Post JE, Veblen DR (1990) Crystal structure determination of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am Mineral 75:477–489

    Google Scholar 

  • Post JE, Von Dreele RB, Buseck PR (1982) Symmetry and cation displacements in hollandites: structure refinements of hollandite, cryptomelane, and priderite. Acta Crystallogr B 38:1056–1065. doi:10.1107/S0567740882004968

    Article  Google Scholar 

  • Post JE, Heaney PJ, Hanson J (2003) Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. Am Mineral 88:142–150

    Google Scholar 

  • Quartieri S, Triscari M, Sabatino G, Boscherini F, Sani A (2002) Fe and Mn K-edge XANES study of ancient Roman glasses. Eur J Mineral 14:749–756. doi:10.1127/0935-1221/2002/0014-0749

    Article  Google Scholar 

  • Reiche I, Chalmin E (2008) Synchrotron radiation and cultural heritage: combined XANES/XRF study at Mn K-edge of blue, grey or black coloured palaeontological and archaeological bone material. J Anal At Spectrom 23:799–806. doi:10.1039/b717442j

    Article  Google Scholar 

  • Reiche I, Vignaud C, Champagnon B, Panczer G, Brouder C, Morin G et al (2001) From mastodon ivory to gemstone: the origin of turquoise color in odontolite. Am Mineral 86:1519–1524

    Google Scholar 

  • Ressler T, Wong J, Roos J, Smith JL (2000) Quantitative speciation of Mn-bearing particulates emitted from autos burning MMT-added gasolines using XANES spectroscopy. Environ Sci Technol 34:950–958. doi:10.1021/es990787x

    Article  Google Scholar 

  • Schulze DG, Sutton SR, Bajt S (1995) Determining manganese oxidation state using X-ray absorption near-edge structure (XANES) spectroscopy. Soil Sci Soc Am J 59:1540–1548

    Google Scholar 

  • Shukla A, Calandra M, Taguchi M, Kotami A, Vankó G, Ccheong SW (2006) Polarized resonant inelastic X-ray scattering as an ultrafine probe of excited states of La2CuO4. Phys Rev Lett 96:077006. doi:10.1103/PhysRevLett.96.077006

    Article  Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D et al (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328. doi:10.1146/annurev.earth.32.101802.120213

    Article  Google Scholar 

  • Tröger L, Arvanitis D, Baberschke K, Michaelis H, Grimm U, Zschech E (1992) Full correction of the self-absorption in soft-fluorescence extended X-ray absorption fine structure. Phys Rev B 46:3283–3289. doi:10.1103/PhysRevB.46.3283

    Article  Google Scholar 

  • Tromp M, Moulin J, Reid G, Evans J (2007) Cr K-Edge XANES spectroscopy: ligand and oxidation state dependence—what is oxidation state? AIP Conf Proc 882:699–701. doi:10.1063/1.2644637

    Article  Google Scholar 

  • Turner S, Buseck PR (1979) Manganese oxide tunnel structures and their intergrowths. Science 203:456–458 Medline. doi:10.1126/science.203.4379.456

    Google Scholar 

  • Turner S, Buseck PR (1983) Defects in n’sutite (γ-MnO2) and dry-cell battery efficiency. Nature 304:143–146. doi:10.1038/304143a0

    Article  Google Scholar 

  • Turner S, Post JE (1988) Refinement of the substructure and superstructure of romanechite. Am Mineral 73:1155–1161

    Google Scholar 

  • Uozumi T, Kotani A, Parbelas JC (2004) Theory of KL23L23 Auger spectra around Ti-K pre-peaks of TiO2. J Electron Spectrosc 137–140:623–627. doi:10.1016/j.elspec.2004.02.045

    Article  Google Scholar 

  • Visser H, Anxolabihhre-Mallart E, Bergmann U, Glatzel P, Robblee JH, Cramer SP et al (2001) Mn K-edge XANES and Kβ XES studies of two Mn-oxo binuclear complexes: investigation of three different oxidation states relevant to the oxygen evolving complex of photosystem II. J Am Chem Soc 123:7031–7039. doi:10.1021/ja004306h

    Article  Google Scholar 

  • Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) A multiplet analysis of Fe K-edge 1 s → 3d pre-edge features of iron complexes. J Am Chem Soc 119:6297–6314. doi:10.1021/ja964352a

    Article  Google Scholar 

  • Wilke M, Farges F, Petit PE, Brown GE Jr, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K XANES spectroscopic study. Am Mineral 86:714–730

    Google Scholar 

  • Winterer M (1997) XAFS—a data analysis program for materials science. J Phys IV 7(C2):243

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Arnaud Papin (formerly at CNRS, Orléans), Ina Reiche (Laboratoire de Recherche des Musées de France, UMR171 CNRS, Paris), and Antoine Bézos (IPGP, Paris) for providing some of the samples from their Ph.D. work. We also thank the mineral collections of the Ecole des Mines de Paris (J.M. Le Cleac’h and A. Djemai), the Centre Canadien de la Nature in Ottawa (P. Piilonen), the Laboratoire de Minéralogie-Cristallographie de Paris (“Sorbonne collection”; J.C. Bouillard), and Stanford University for providing some of the specimens used in this study (the others are from the private collection of François Farges). The staffs of SSRL (especially Joe Rodgers, Cathy Knotts, and Michelle Steger) and ESRF (especially Jean Susini on ID21) are thanked for their help. Helpful discussions with John R. Rehr (University of Washington at Seattle, USA) on FEFF calculations and P. Glatzel (ESRF, Grenoble, France) on multiplet calculations are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Chalmin.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 [INSERT CAPTION HERE] (PDF 8 kb)

MOESM2 [INSERT CAPTION HERE] (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalmin, E., Farges, F. & Brown, G.E. A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses. Contrib Mineral Petrol 157, 111–126 (2009). https://doi.org/10.1007/s00410-008-0323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0323-z

Keywords

Navigation