Skip to main content
Log in

Origin of a Mesozoic granite with A-type characteristics from the North China craton: highly fractionated from I-type magmas?

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report geochronological, geochemical and isotopic data for the Mesozoic Shangshuiquan granite from the northern margin of the North China craton. The granite is highly fractionated, with SiO2 > 74%. Occurrence of annitic biotite, high contents of alkalis (K2O + Na2O), Rb, Y, Nb and heavy rare earth elements, high FeOt/MgO, low contents of CaO, Al2O3, Ba, and Sr, and large negative Eu anomalies, makes it indistinguishable from typical A-type granites. A mantle-derived origin for the rocks of the granite is not favored because their high initial 87Sr/86Sr (≥0.706) and low εNd (t) (<−15) are completely different from either those of the lithospheric or asthenospheric mantle. In fact, their Sr–Nd isotopes fall within the range of Sr–Nd isotopic compositions of the Archean granulite terrains and are comparable to those of Mesozoic crustal-derived I-type granitoids in the region. Therefore, the Shangshuiquan granite is considered to be dominantly derived from partial melting of the ancient lower crust. Its parental magmas prove to be similar to I-type magmas and to have undergone extensive fractionation during its ascent. This is supported by the fact that some of the nearby Hannuoba feldspar-rich granulite xenoliths can be indeed regarded as the early cumulates in terms of their mineralogy, chemistry, Sr–Nd isotopes and zircon U–Pb ages and Hf isotopes. It is furthermore argued that some of highly fractionated granites worldwide, especially those with A-type characteristics and lacking close relationship with unfractionated rocks, may in fact be fractionated I-type granites. This suggestion can explain their close temporal and spatial associations as well as similar Sr–Nd isotopes with I-type granites. Our study also sheds new light on the petrogenesis of deep crustal xenoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arth JG (1976) Behavior of trace elements during magmatic processes—a summary of theoretical models and their applications. J Res US Geol Surv 4:41–47

    Google Scholar 

  • Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626. doi:10.1016/S0024-4937(98)00085-1

    Article  Google Scholar 

  • Blichert-Toft J, Albarede F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258. doi:10.1016/S0012-821X(97)00040-X

    Article  Google Scholar 

  • Brooks CK, Henderson P, Ronsbo JG (1981) Rare earth element partitioning between allanite and glass in the obsidian of Sandy Bracs, Northern Ireland. Mineral Mag 44:157–160. doi:10.1180/minmag.1981.044.334.07

    Article  Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26

    Google Scholar 

  • Chen SH, Zhang GH, Zhou XH, Sun M, Feng JL, Xie MZ (1998) Petrological investigation on the granulite xenoliths from Hannuoba basalts, northern Sino-Korean craton. Acta Petrol Sin 14:366–380 (in Chinese)

    Google Scholar 

  • Chen SH, O’Reilly SY, Zhou XH, Griffin WL, Zhang GH, Sun M, Feng JL, Zhang M (2001) Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean craton, China: evidence from xenoliths. Lithos 56:267–301. doi:10.1016/S0024-4937(00)00065-7

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80:189–200. doi:10.1007/BF00374895

    Article  Google Scholar 

  • Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual-source model. Geology 19:163–166. doi:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

    Article  Google Scholar 

  • Eby GN (1990) A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134. doi:10.1016/0024-4937(90)90043-Z

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048. doi:10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates from major river system. Earth Planet Sci Lett 70:221–236. doi:10.1016/0012-821X(84)90007-4

    Article  Google Scholar 

  • Green TH, Pearson NJ (1985) Rare earth element partitioning between clinopyroxene and silicate liquid at moderate to high pressure. Contrib Mineral Petrol 91:24–26. doi:10.1007/BF00429424

    Article  Google Scholar 

  • Griffin WL, Zhang AD, O’Reilly SY, Ryan CG (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M, Chung SL, Lo CH, Lee TY (eds) Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Geodynamic Series 27, pp 107–126

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY (2002) Zircon geochemistry and magma mixing, SE China: in situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269. doi:10.1016/S0024-4937(02)00082-8

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477. doi:10.1016/0016-7037(84)90403-4

    Article  Google Scholar 

  • Huang XL, Xu YG, Liu DY (2004) Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochim Cosmochim Acta 68:127–149. doi:10.1016/S0016-7037(03)00416-2

    Article  Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155. doi:10.1016/0012-821X(80)90125-9

    Article  Google Scholar 

  • Jiang N (2005) Petrology and geochemistry of the Shuiquangou syenitic complex, northern margin of the North China craton. J Geo Soc Lond 162:203–215. doi:10.1144/0016-764903-144

    Article  Google Scholar 

  • Jiang N, Liu YS, Zhou WG, Yang JH, Zhang SQ (2007) Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim Cosmochim Acta 71:2591–2608. doi:10.1016/j.gca.2007.02.018

    Article  Google Scholar 

  • King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J Petrol 38:371–391. doi:10.1093/petrology/38.3.371

    Article  Google Scholar 

  • Landenberger B, Collins WJ (1996) Derivation of A-type granites from a dehydration charnockitic lower crust: evidence from the Chaelundi complex, eastern Australia. J Petrol 37:145–170. doi:10.1093/petrology/37.1.145

    Article  Google Scholar 

  • Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20:339–342. doi:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

    Article  Google Scholar 

  • Liu YS, Gao S, Jin SY, Hu SY, Sun M, Zhao ZB, Feng JL (2001) Geochemistry of lower crustal xenoliths from Neocene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition. Geochim Cosmochim Acta 65:2589–2604. doi:10.1016/S0016-7037(01)00609-3

    Article  Google Scholar 

  • Liu YS, Gao S, Yuan HL, Zhou L, Liu XM, Wang XC, Hua ZC, Wang LS (2004) U–Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chem Geol 211:87–109. doi:10.1016/j.chemgeo.2004.06.023

    Article  Google Scholar 

  • Liu YS, Gao S, Lee C-TA, Hu SY, Liu XM, Yuan HL (2005) Melt-peridotite interactions: links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett 234:39–57. doi:10.1016/j.epsl.2005.02.034

    Article  Google Scholar 

  • Loiselle MC, Wones DR (1979) Characterization and origin of anorogenic granites. Geol Soc Am Abstr 11:468

    Google Scholar 

  • Ludwig KR (2003) User’s manual for ISOPLOT 3.00: a geochronological toolkit for Microsoft Excel, Special Publication No. 4. Berkeley Geochronology Center, p 71

  • Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357. doi:10.1016/0012-821X(78)90021-3

    Article  Google Scholar 

  • Menzies A, Fan WM, Zhang M (1993) Paleozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard HM, Alabaster T, Harris, NBW, Neary CR (eds) Magmatic processes and plate tectonic. Geological Society, London, pp 71–81

  • Miao LC, Qiu YM, McNaughton NJ, Luo ZK, Groves DI, Zhai YS, Fan WM, Zhai MG, Guan K (2002) SHRIMP U–Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geol Rev 19:187–204. doi:10.1016/S0169-1368(01)00041-5

    Article  Google Scholar 

  • Mushkin A, Navon O, Halicz L, Hartmann G, Stein M (2003) The petrogenesis of A-type magmas from the Amram Massif, southern Israel. J Petrol 44:815–832. doi:10.1093/petrology/44.5.815

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust, treatise in geochemistry, vol 3, pp 1–64

  • Rudnick RL, Taylor SR (1987) The composition and petrogenesis of the lower crust: a xenolith study. J Geophys Res 92(B13):13981–14005. doi:10.1029/JB092iB13p13981

    Article  Google Scholar 

  • Rudnick RL, Gao S, Ling WL, Liu YS, McDonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 77:609–637. doi:10.1016/j.lithos.2004.03.033

    Article  Google Scholar 

  • Soderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324. doi:10.1016/S0012-821X(04)00012-3

    Article  Google Scholar 

  • Song Y, Frey FA, Zhi XC (1990) Isotopic characteristics of Hannuoba basalts, Eastern China—implications for their petrogenesis and the composition of subcontinental mantle. Chem Geol 88:35–52. doi:10.1016/0009-2541(90)90102-D

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins, vol 42. Geological Society of London, Special Publications, pp 313–345

  • Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma; an example from the Padthaway Ridge, South Australia. Lithos 28:151–179. doi:10.1016/0024-4937(92)90029-X

    Article  Google Scholar 

  • Volkert RA, Feigenson MD, Patino LC, Delaney JS, Drake AA Jr (2000) Sr and Nd isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA. Lithos 50:325–347. doi:10.1016/S0024-4937(99)00065-1

    Article  Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental data and applications to trace element geochemistry. Contrib Mineral Petrol 70:407–419. doi:10.1007/BF00371047

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304. doi:10.1016/0012-821X(83)90211-X

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419. doi:10.1007/BF00402202

    Article  Google Scholar 

  • Wilde SA, Zhou XH, Nemchin AA, Sun M (2003) Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 31:817–820. doi:10.1130/G19489.1

    Article  Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124. doi:10.1007/BF00371501

    Article  Google Scholar 

  • Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209:121–135. doi:10.1016/j.chemgeo.2004.04.026

    Article  Google Scholar 

  • Wu FY, Sun DY, Li HM, Jahn BM, Wilde SA (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173. doi:10.1016/S0009-2541(02)00018-9

    Article  Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126. doi:10.1016/j.chemgeo.2006.05.003

    Article  Google Scholar 

  • Yuan HL, Gao S, Liu XM, Li HM, Günther D, Wu FY (2004) Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand Newsl 28:353–370. doi:10.1111/j.1751-908X.2004.tb00755.x

    Article  Google Scholar 

  • Zhai MG (1996) Granulites and lower continental crust in North China Archean Craton. Seismological Press, Beijing

    Google Scholar 

  • Zhang GH (1997) Geochemistry of granulite and pyroxenite xenoliths in Hannuoba basalts, North China, and its implications to crust–mantle interaction. PhD dissertation (Institute of Geology and Geophysics, Chinese Academy of Sciences), p 73 (in Chinese)

  • Zhang XH, Mao Q, Zhang HF, Wilde SA (2008) A Jurassic peraluminous leucogranite from Yiwulüshan, western Liaoning, North China craton: age, origin and tectonic significance. Geol Mag 145:305–320. doi:10.1017/S0016756807004311

    Article  Google Scholar 

  • Zhao GC, Wilde SA, Cawood PA, Sun M (2001) Archean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P–T constraints and tectonic evolution. Precambrian Res 107:45–73. doi:10.1016/S0301-9268(00)00154-6

    Article  Google Scholar 

  • Zheng JP, Lu FX, Yu CM, Tang HY (2004) An in situ zircon Hf isotopic, U–Pb age and trace element study of banded granulite xenolith from Hannuoba basalt: Tracking the early evolution of the lower crust in the North China craton. Chin Sci Bull 49:277–285. doi:10.1360/03wd0385

    Article  Google Scholar 

  • Zhou XH, Sun M, Zhang GH, Chen SH (2002) Comtinental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos 62:111–124. doi:10.1016/S0024-4937(02)00110-X

    Article  Google Scholar 

Download references

Acknowledgments

Qian Mao and Yuguang Ma are thanked for help in cathodoluminescence imaging and Zhuyin Chu, Chaofeng Li, Haihong, Chen, Zhaochu Hu, Xindi Jin, Liewen Xie and Yueheng Yang are thanked for helps during Sr and Nd isotope, zircon LA-ICP-MS age, ICP-MS, XRF and zircon Hf isotope analyses. This research was supported by the Ministry of Science and Technology, China (grant 2006CB403504) and the National Natural Science Foundation of China (No. 40773024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng Jiang.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, N., Zhang, S., Zhou, W. et al. Origin of a Mesozoic granite with A-type characteristics from the North China craton: highly fractionated from I-type magmas?. Contrib Mineral Petrol 158, 113–130 (2009). https://doi.org/10.1007/s00410-008-0373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0373-2

Keywords

Navigation