Skip to main content
Log in

Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The geochemistry and petrology of tonalitic to trondhjemitic samples (n = 85) from eight different plagiogranite intrusions at the gabbro/sheeted dyke transition of the Troodos Ophiolite were studied in order to determine their petrogenetic relationship to the mafic plutonic section and the lava pile. The plagiogranitic rocks have higher SiO2 contents than the majority of the glasses of the Troodos lava pile, but lie on a continuation of the chemical trends defined by the extrusive rocks, indicating that the shallow intrusions generally represent crystallised magmas. We define three different groups of plagiogranites in the Troodos Ophiolite based on different incompatible element contents and ratios. The first and most common plagiogranite group has geochemical similarities to the tholeiitic lavas forming the lavas and sheeted dyke complex in the Troodos crust, implying that these magmas formed at a spreading axis. The second plagiogranite group occurs in one intrusion that is chemically related to late-stage and off-axis boninitic lavas and dykes. One intrusion next to the Arakapas fault zone consists of incompatible element-enriched plagiogranites which are unrelated to any known mafic crustal rocks. The similarities of incompatible element ratios between plagiogranites, lavas and mafic plutonic rocks, the continuous chemical trends defined by plagiogranites and mafic rocks, as well as incompatible element modelling results, all suggest that shallow fractional crystallisation is the dominant process responsible for formation of the felsic magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abelson M, Baer G, Agnon A (2001) Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge. Lett Nat 409:72–75

    Article  Google Scholar 

  • Aigner-Torres M, Blundy J, Ulmer P, Pettke T (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Mineral Petrol 153:647–667

    Article  Google Scholar 

  • Amri I, Benoit M, Ceuleneer G (1996) Tectonic setting for the genesis of oceanic plagiogranites: evidence from a palaeo-spreading structure in the Oman ophiolite. Earth Planet Sci Lett 139:177–194

    Article  Google Scholar 

  • Barker F, Arth JG (1976) Generation of trondhjemitic–tonalitic liquids and Archaean bimodal trondhjemite-basalt suites. Geology 4:596–600

    Article  Google Scholar 

  • Bednarz U, Schmincke H-L (1993) Petrological and chemical evolution of the northeastern Troodos extrusive series. J Petrol 35:489–523

    Article  Google Scholar 

  • Benn K, Laurent R (1987) Intrusive suite documented in the Troodos ophiolite plutonic complex, Cyprus. Geology 15:821–824

    Article  Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46(1):135–167

    Article  Google Scholar 

  • Brophy JG (2009) La–SiO2 and Yb–SiO2 systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. Contrib Mineral Petrol 158:99–111

    Article  Google Scholar 

  • Brophy JG, Pu X (2012) Rare earth element–SiO2 systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment, New Brunswick, Canada: a field evaluation of some model predictions. Contrib Mineral Petrol 164(2):191–204

    Article  Google Scholar 

  • Byerly GR, Melson WG, Vogt PR (1976) Rhyodacites, andesites, ferro-basalts and ocean tholeiites from the galapagos spreading center. Earth Planet Sci Lett 30(2):215–221

    Article  Google Scholar 

  • Cameron WE (1985) Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib Mineral Petrol 89:239–255

    Article  Google Scholar 

  • Cann J, Gillis KM (2004) Hydrothermal insights from the Troodos ophiolite, Cyprus. In: Davis EE, Elderfiled H (eds) Hydrogeology of oceanic lithosphere. Cambridge University Press, Cambridge, pp 274–310

    Google Scholar 

  • Caselli D, Lombardo B (2007) The plagiogranite—FeTi-oxide gabbro association of verne (Monviso metamorphic ophiolite, western alps). Ofioliti 32(1):1–14

    Google Scholar 

  • Coleman RG, Peterman ZE (1975) Oceanic plagiogranite. J Geophys Res 80(8):1099–1108

    Article  Google Scholar 

  • Coogan LA, Banks GJ, Gillis KM, MacLeod CJ, Pearce JA (2003) Hidden melting signatures recorded in the Troodos ophiolite plutonic suite: evidence for widespread generation of depleted melts and intra-crustal melt aggregation. Contrib Mineral Petrol 144:484–505

    Article  Google Scholar 

  • Cooper LM, Plank T, Arculus RJ, Hauri EH, Hall PS, Parman SW (2010) High-Ca boninites from the active Tonga Arc. J Geophys Res 115. doi:10.1029/2009JB006367

  • Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites: and related rocks. Springer, Berlin, pp 1–49

    Google Scholar 

  • Dixon-Spulber S, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J Petrol 24:1–25

    Article  Google Scholar 

  • Dunn T, Senn C (1994) Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochim Cosmochim Acta 58(2):717–733

    Article  Google Scholar 

  • Flower MFJ, Levine HM (1987) Petrogenesis of a tholeiite-boninite sequence from Ayios Mamas, Troodos ophiolite; evidence for splitting of a volcanic arc? Contrib Mineral Petrol 97:509–524

    Article  Google Scholar 

  • France L, Koepke J, Ildefonse B, Cichy SB, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Mineral Petrol 160:683–704

    Article  Google Scholar 

  • Freund S, Beier C, Krumm S, Haase M (2013) Oxygen isotope evidence for the formation of andesitic–dacitic magmas from the fast-spreading Pacific–Antarctic Rise by assimilation–fractional crystallisation. Chem Geol 367:271–283. doi:10.1016/j.chemgeo.2013.04.013

    Article  Google Scholar 

  • Fujikami H, Tatsumoto M, Aoki K (1984) Partition coefficients of Hf, Zr and REE between phenocrysts and groundmasses. In: Proceedings of the fourteenth lunar and planetary science conference. J Geophys Res 89:662–672

  • Garbe-Schönberg C-D (1993) Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand Newslett 17(1):81–97

    Article  Google Scholar 

  • Geist D, Howard HA, Larson P (1995) The generation of oceanic rhyolites by crystal fractionation: the basalt-rhyolite association at Volcán Alcedo, Galápagos Archipelago. J Petrol 36(4):965–982

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Gillis KM, Coogan LA (2002) Anatectic migmatites from the roof of an ocean ridge magma chamber. J Petrol 43(11):2075–2095

    Article  Google Scholar 

  • Govindaraju K (1994) 1994 Compilation of working values and descriptions for 383 geostandards. Geostand Newslett 118:1–158

    Article  Google Scholar 

  • Govindaraju K, Roelandts I (1993) Second report (1993) on the first three GIT-IWG rock reference samples: anorthosite from Greenland, AN-G; basalte D’Essey-La-Côte, BE-N; Granite de Beauvoir, MA-N. Geostand Newslett 17(2):227–294

    Article  Google Scholar 

  • Gunnarsson B, Marsh BD, Taylor HP (1998) Generation of Icelandic rhyolites: silicic lavas from the Torfajôkull central volcano. J Volcanol Geoth Res 83(1–2):1–45

    Article  Google Scholar 

  • Heaton THE, Sheppard SMF (1977) Hydrogen and oxygen isotope evidence for sea-water-hydrothermal alteration and ore deposition, Troodos complex, Cyprus. Geol Soc Lond Spec Publ 7:42–57

    Article  Google Scholar 

  • Hébert R, Laurent R (1990) Mineral chemistry of the plutonic section of the Troodos ophiolite: New constraints for genesis of arc-related ophiolites. In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) OPHIOLITES oceanic crustal analogues, proceedings of the symposium “Troodos 1987”. The Geological Survey Department, Ministry of Agriculture and Natural Resources, Nicosia, Cyprus, pp 149–163

  • Horn I, Foley SF, Jackson SE, Jenner GA (1994) Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melt. Chem Geol 117(1–4):193–218

    Article  Google Scholar 

  • Imai N, Terashima S, Itoh S, Ando A (1995) 1994 compilation values for GSI reference samples, “Igneous rock series”. Geochem J 29:91–95

    Article  Google Scholar 

  • Juster TC, Grove TL, Perfit MR (1989) Experimental constraints on the generation of Fe-Ti basalts, andesites and rhyodacites at the Galapagos spreading center, 85 W and 95 W. Geophys Res 94:9251–9274

    Article  Google Scholar 

  • Kelemen PB, Koga K, Shimizu N (1997) Geochemistry of gabbro sills in the crust-mantle transition zone ot the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet Sci Lett 146:475–488

    Article  Google Scholar 

  • Klein E, Stosch H-G, Seck HA (1997) Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study. Chem Geol 138(3–4):257–271

    Article  Google Scholar 

  • Klein E, Stosch H-G, Seck HA, Shimizu N (2000) Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochemi Cosmochim Acta 64(1):99–115

    Article  Google Scholar 

  • Klemme S, Günther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234(3–4):251–263

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Miner Petrol 145(4):414–432

    Article  Google Scholar 

  • Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib Miner Petrol 153(1):67–84

    Article  Google Scholar 

  • König S, Münker C, Schuth S, Garbe-Schönberg C-D (2008) Mobility of tungsten in subduction zones. Earth Planet Sci Lett 274:82–92

    Article  Google Scholar 

  • König S, Münker C, Schuth S, Luguet A, Hoffmann JE, Kuduon J (2010) Boninites as windows into trace element mobility in subduction zones. Geochem Cosmochim Acta 74:684–704

    Article  Google Scholar 

  • Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges, vol 71. Mantle flow and melt generation at mid-ocean ridges. Am Geophys Union Mem, Washington DC

  • Laurent R (1990) Parental magma and crystal fractionation modeling of the CY-4 plutonic rocks, Troodos ophiolite, Cyprus. In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) OPHIOLITES oceanic crustal analogues, proceedings of the symposium “Troodos 1987”. The Geological Survey Department, Ministry of Agriculture and Natural Resources, Nicosia, Cyprus, pp 139–148

  • Laurent R, Hébert R (1989) Petrological Features of Gabbroic and Ultramafic Rocks from Deep Drill CY-4, Cyprus. In: Gibson IL, Malpas J, Robinson PT, Xenophontos C (eds) Cyprus crustal study project: initial report, Hole CY-4, Geological Survey of Canada, pp 115–145

  • Le Bas MJ (2000) IUGS Reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41:1467–1470

    Article  Google Scholar 

  • Malpas J, Case G, Moore P (1989) The geology of the area immediately surrounding the CY-4 borehole of Cyprus Crustal Study Project. In: Gibson IL, Malpas J, Robinson PT, Xenophontos C (eds) Cyprus crustal study project: initial report, Hole CY-4. Geological Survey of Canada, pp 31–37

  • McBirney AR (1993) Differentiated rocks of the Galapagos hotspot. Geol Soc Lond Spec Publ 76:61–69

    Article  Google Scholar 

  • McDonough WF, Sun S–S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Meffre S, Falloon TJ, Crawford TJ, Hoernle K, Hauff F, Duncan RA, Bloomer SH, Wright DJ (2012) Basalts erupted along the Tonga fore arc during subduction initiation: evidence from geochronology of dredged rocks from the Tonga fore arc trench. Geochem Geophys Geosyst 13(12):1–17

    Article  Google Scholar 

  • Miyashiro A (1973) The Troodos ophiolite complex was probably formed in an island arc complex. Earth Planet Sci Lett 19:218–224

    Article  Google Scholar 

  • Moores EM, Vine FJ (1971) The Troodos massif, Cyprus and other ophiolites as oceanic crust: evaluation and implications. Philos Trans R Soc 268(1192):443–467

    Article  Google Scholar 

  • Muehlenbachs K, Byerly G (1982) 18O-Enrichment of silicic magmas caused by crystal fractionation at the Galapagos spreading center. Contrib Mineral Petrol 79(1):76–79

    Article  Google Scholar 

  • Muenow DW, Garcia MO, Aggrey KE, Bednarz U, Schmincke H-U (1990) Volatiles in submarine glasses as a discriminant of tectonic origin: application to the Troodos ophiolite. Nature 343:159–161

    Article  Google Scholar 

  • Mukasa SB, Ludden JN (1987) Uranium-lead ages of plagiogranites from the Troodos ophiolite. Cyprus, and their tectonic significance. Geology 15:825–828

    Article  Google Scholar 

  • Natland JH, Dick HJB (2009) Paired melt lenses at the East Pacific Rise and the pattern of melt flow through the gabbroic layer at a fast-spreading ridge. Lithos 112(1–2):73–86

    Article  Google Scholar 

  • Nielsen RL, Gallahan WE, Newberger F (1992) Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contrib Mineral Petrol 110:488–499

    Article  Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determining using trace element analysis. Earth Planet Sci Lett 19:290–300

    Article  Google Scholar 

  • Pearce JA, Robinson PT (2010) The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res 18:60–81

    Article  Google Scholar 

  • Rautenschlein M, Jenner G, Hertogen J, Hofmann A, Kerrich R, Schmincke H, White W (1985) Isotopic and trace element composition of volcanic glasses from the Akaki canyon, Cyprus—implications for the origin of the Troodos Ophiolite. Earth Planet Sci Lett 75:369–383

    Article  Google Scholar 

  • Resing JA, Rubin KH, Embley RW, Lupton JE, Baker ET, Dziak RP, Baumberger T, Lilley MD, Huber JA, Shank TM, Butterfield DA, Clague DA, Keller NS, Merle SG, Buck NJ, Michael PJ, Soule A, Caress DW, Walker SL, Davis R, Cowen JP, Reysenbach A-L, Thomas H (2011) Active submarine eruption of boninite in the northeastern Lau Basin. Nat Geosci 4:799–806

    Article  Google Scholar 

  • Richardson CJ, Cann JR, Richards HG, Cowan JG (1987) Metal-depleted root zone of the Troodos ore-forming hydrothermal systems, Cyprus. Earth Planet Sci Lett 84(2–3):243–253

    Article  Google Scholar 

  • Robertson AHF, Hudson JD (1973) Cyprus umbers: chemical precipitates on a Tethyan ocean ridge. Earth Planet Sci Lett 18(1):93–101

    Article  Google Scholar 

  • Rollinson R (2009) New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112:603–614

    Article  Google Scholar 

  • Rubin KH, Sinton JM, Maclennan J, Hellebrand E (2009) Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nat Geosci 2:321–328

    Article  Google Scholar 

  • Schiffman P, Schmith BM (1988) Petrology and oxygen isotope geochemistry of a fossil seawater hydrothermal system within the Solea Graben, Northern Troodos ophiolite, Cyprus. J Geophys Res 93:4612–4624

    Article  Google Scholar 

  • Schouten H, Kelemen PB (2002) Melt viscosity, temperature and transport processes, Troodos ophiolite, Cyprus. Earth Planet Sci Lett 201:337–352

    Article  Google Scholar 

  • Sobolev AV, Migdisov AA, Portnyagin MV (1996) Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus. Petrology 4(3):307–317

    Google Scholar 

  • Staudigel H, Tauxe L, Gee JS, Bogaard P, Haspels J, Kale G, Leenders A, Meijer P, Swaak B, Tuin M, van Soest MC, Verdurmen EAT, Zevenhuizen A (1999) Geochemistry and intrusive directions in sheeted dikes in the Troodos Ophiolite: implications for mid-ocean ridge spreading centers. Geochem Geophys Geosyst 1:1–19

    Google Scholar 

  • Thy P (1987) Magmas and magma chamber evolution, Troodos ophiolite, Cyprus. Geology 15:316–319

    Article  Google Scholar 

  • Thy P, Lesher CE, Mayfield JD (1999) Low-pressure melting studies of basalt and basaltic andesite from the southeast Greenland continental margin and the origin of dacites at site 917. In: Larsen HC, Duncan RA, Allan JF, Brooks K (eds) Proceedings of the ODP, Science Research, Ocean Drilling Program, College Station, vol 163

  • Toplis MJ, Carroll MR (1995) An Experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    Article  Google Scholar 

  • Varga RJ, Gee JS, Bettison-Varga L, Anderson RS, Johnson CL (1999) Early establishment of seafloor hydrothermal systems during structural extension: paleomagnetic evidence from the Troodos ophiolite, Cyprus. Earth Planet Sci Lett 171:221–235

    Article  Google Scholar 

  • Wanless VD, Perfit MR, Ridley WI, Klein E (2010) Dacite petrogenesis on mid-ocean ridges: evidence for ocean crustal melting and assimilation. J Petrol 51(12):2377–2410

    Article  Google Scholar 

  • Wanless VD, Perfit MR, Ridley WI, Wallace PJ, Grimes CB, Klein E (2011) Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: the role of assimilation at spreading centers. Chem Geol 287:54–65

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the help of U. Westernströer during trace element analyses. We thank Diplom students T. Endres, C. Weinzierl and H. Schmidt for the help during field work and H. Brätz and R. Klemd for timely and fast LA-ICP-MS analyses. We want to acknowledge A. Richter, M. Meyer and P. Brandl for loyal support during EMP problems. We want to express our thanks to M. Hertel for her perennial lab work and Jeanne and Florian for patience sawing the hard rocks. The manuscript benefitted from the very constructive reviews by L. Coogan and an anonymous reviewer and from comments by the editor J. Hoefs. S. Freund was funded by DFG grant HA2568/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Freund.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 247 kb)

Supplementary material 2 (PDF 241 kb)

Supplementary material 3 (PDF 240 kb)

Supplementary material 4 (PDF 248 kb)

410_2014_978_MOESM5_ESM.xls

Supplementary Table 1: Major and trace elements of all measured Troodos plagiogranites and aphyric dykes and averages and reference values of standard measurements. (XLS 104 kb)

Supplementary Table 2: Major and trace elements of Troodos plagiogranite minerals (EMP and LA-ICP-MS). (XLS 432 kb)

410_2014_978_MOESM7_ESM.xls

Supplementary Table 3: Mineral assemblage and composition of Troodos plagiogranites using thin-sections (microscopy and EMP analyses) and X-ray diffraction. (XLS 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freund, S., Haase, K.M., Keith, M. et al. Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contrib Mineral Petrol 167, 978 (2014). https://doi.org/10.1007/s00410-014-0978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-0978-6

Keywords

Navigation