Skip to main content

Advertisement

Log in

Retrogressed lawsonite blueschists from the NW Iberian Massif: PTt constraints from thermodynamic modelling and 40Ar/39Ar geochronology

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Blueschist facies terranes in the Variscan Ibero-Armorican Arc are restricted to scarce and relatively small areas. One of these examples is the Ceán Unit, which is the westernmost exposure of the middle allochthonous sheet of the Variscan belt in the Malpica–Tui Complex (NW Iberian Massif). The Ceán Unit is a highly condensed metamorphic succession with a lower part in the blueschist facies and an upper part without HP relicts. It comprises variable proportions of glaucophane–chloritoid-bearing metapelites and mafic rocks with abundant well-preserved pseudomorphs after euhedral lawsonite. Both lithologies show systematic changes in texture and mineral composition that are spatially related depending on deformation. The metamorphic evolution of the metabasic rocks has been constrained in the PT space through pseudosection approach and is characterised by H2O-undersaturated prograde evolution induced by the crystallisation of lawsonite. Peak conditions in the blueschist/LT-eclogite facies have been constrained at ca. 2.2 GPa and 560 °C. Exhumation-related metamorphism is characterised by a nearly isothermal decompression from the lawsonite-bearing fields to fields with stable albite at P ≈ 1 GPa. This lead to the pseudomorphism of lawsonite in the early-decompression stages, and a subsequent amphibolite–greenschist facies overprint at P < 0.8 GPa and T ≈ 440–480 °C. The preservation of the lawsonite crystal shape despite complete retrogression indicates that pseudomorphism occurred as a static process and that particular levels of the blueschist host rock were not affected by penetrative deformation during exhumation. 40Ar/39Ar step heating of phengitic muscovite from the pelitic schists interbedded with the lawsonite pseudomorph-bearing metabasic rocks yield plateau ages of ca. 363 ± 2 and 354 ± 1 Ma. The older age is interpreted as the age of the peak blueschist facies metamorphism. The age of 355 Ma is interpreted as a cooling age and is inferred to represent some point relatively close to peak conditions at the onset of the isothermal decompression. 40Ar/39Ar dating of muscovite from the quartzo-feldspathic mylonites of the Bembibre–Ceán detachment, at the base of the Ceán Unit, yields an age of ca. 337 ± 3 Ma, interpreted as the age of the post-nappe extensional tectonics. Similar data obtained from the blueschists of Ile de Groix (Armorican Massif; Bosse et al. in Chem Geol 220:21–45, 2005) support the equivalence of the Ceán Unit and the Upper Unit of Ile de Groix along the Ibero-Armorican Arc and suggest that these units share a blueschist facies event constrained at ca. 360–370 Ma, that is inferred to represent the Late Devonian–Early Carboniferous subduction of the northern margin of Gonwana beneath Laurussia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abati J (2002) Petrología metamórfica y geocronología de la unidad culminante del Complejo de Ordenes en la región de Carballo (Galicia, NW del Macizo Ibérico): Sada–A Coruña, vol 20. A Coruña, Ediciós do Castro, p 269

    Google Scholar 

  • Abati J, Dunning GR (2002) Edad U-Pb en monacitas y rutilos de los paragneisses de la Unidad de Agualada (Complejo de Ordenes, NW del Macizo Ibérico). Geogaceta 32:95–98

    Google Scholar 

  • Abati J, Gerdes A, Fernández Suárez J, Arenas R, Whitehouse MJ, Díez Fernández R (2010) Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. Geol Soc Am Bull Bull 122:219–235

    Article  Google Scholar 

  • Arenas R, Rubio Pascual FJ, Diaz Garcia F, Martínez Catalán JR (1995) High-pressure micro-inclusions and development of an inverted metamorphic gradient in the Santiago Schists (Ordenes Complex, NW Iberian Massif, Spain): evidence of subduction and syncollisional decompression. J Metamorph Geol 13:141–164

    Article  Google Scholar 

  • Arenas R, Abati J, Martínez Catalán JR, Diaz Garcia F, Rubio Pascual FJ (1997) P–T evolution of eclogites from the Agualada Unit (Ordenes Complex, northwest Iberian Massif, Spain): implications for crustal subduction. Lithos 40:221–242

    Article  Google Scholar 

  • Arps CES (1981) Amphibolites and other mafic rocks of the Blastomylonitic Graben in Western Galicia, NW Spain: field relations and petrography. Leidse Geol Meded 52:57–71

    Google Scholar 

  • Ballèvre M, Pitra P, Bohn M (2003) Lawsonite growth in the epidote blueschists from the Ile de Groix (Armorican Massif, France): a potential geobarometer. J Metamorph Geol 21:723–735

    Article  Google Scholar 

  • Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geosci 341:174–201

    Article  Google Scholar 

  • Ballèvre M, Martínez Catalán JR, López-Carmona A et al (in press) Correlation of the nappe stack in the Ibero–Armorican arc across the Bay of Biscay: a joint French–Spanish project. In: Schulmann K, Oggiano G, Lardeaux JM, Janousek V, Martínez Catalán JR, Scrivener R (eds) The variscan orogeny: extent, timescale and the formation of the European Crust. London: Geol Soc Lond Special Pub

  • Barrientos X, Selverstone J (1993) Infiltration vs. thermal overprinting of epidote blueschists, Ile de Groix, France. Geology 21:69–72

    Article  Google Scholar 

  • Bellido F, Brandle JL, Lasala M, Reyes J (1992) Consideraciones petrológicas y cronológicas sobre las rocas graníticas hercínicas de Galicia. Cuadernos del Laboratorio Xeologico de Laxe 17:241–261

    Google Scholar 

  • Bosse V, Ballèvre M, Vidal O (2002) Ductile thrusting recorded by the garnet isograd from blueschist-facies metapelites of the Ile de Groix, Armorican Massif, France. J Petrol 43:485–510

    Article  Google Scholar 

  • Bosse V, Féraud G, Ballèvre M, Peucat JJ, Corsini M (2005) Rb–Sr and 40Ar/39Ar ages in blueschists from the Ile de Groix (Armorican Massif, France): implications for closure mechanisms in isotopic systems. Chem Geol 220:21–45

    Article  Google Scholar 

  • Burov E, Francois T, Yamato P, Wolf S (2014) Mechanism of continental subduction and exhumation of HP and UHP rocks. Gond Res 25:464–493

    Article  Google Scholar 

  • Clarke GL, Powell R, Fitzherbert JA (2006) The lawsonite paradox: a comparison of field evidence and mineral equilibria modelling. J Metamorph Geol 24:715–725

    Article  Google Scholar 

  • Dallmeyer RD, Martínez Catalán JR, Arenas R, Gil Ibarguchi JI, Gutierrez Alonso G, Farias P, Bastida F, Aller J (1997) Diachronous Variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277:307–337

    Article  Google Scholar 

  • Diener JFA, Powell R (2010) Influence of ferric iron on the stability of mineral assemblages. J Metamorph Geol 28:599–613

    Article  Google Scholar 

  • Diener JFA, Powell R (2012) Revised activity-composition models for clinopyroxene and amphibole. J Metamorph Geol 30:131–142

    Article  Google Scholar 

  • Diener JFA, Powell R, White RW (2008) Quantitative phase petrology of cordierite-orthoamphibole gneisses and related rocks. J Metamorph Geol 26:795–814

    Article  Google Scholar 

  • Díez Fernández R, Martínez Catalán JR, Arenas R, Abati J (2011) Tectonic evolution of a continental subduction-exhumation channel: variscan structure of the basal allochthonous units in NW Spain. Tectonics TC30:3009

    Google Scholar 

  • Díez Fernández R, Martínez Catalán JR, Arenas R, Abati J (2012) The onset of the assembly of Pangaea in NW Iberia: constraints on the kinematics of continental subduction. Gondwana Res 22:20–25

    Article  Google Scholar 

  • Dipple GM, Ferry JM (1992) Fluid flow and stable isotopic alteration in rocks at elevated temperatures with applications to metamorphism. Geochim Cosmochim Acta 56:3539–3550

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Duprat-Oualid S, Yamato P, Pitra P (2013) Major role of shear heating on intracontinental inverted metamorphism: inference from a thermo-kinematic parametric study. Tectonophysics 608:812–831

    Article  Google Scholar 

  • Enami M, Suzuki K, Liou JG, Bird DK (1993) Al–Fe3+ and F–OH substitutions in titanite and constraints on their P–T dependence. Eur J Mineral 5:219–231

    Google Scholar 

  • Engvik AK, Austrheim H, Andersen TB (2000) Structural, mineralogical and petrophysical effects on deep crustal rocks of fluid limited polymetamorphism, Western Gneiss Region, Norway. J Geol Soc Lond 157:121–134

    Article  Google Scholar 

  • Ernst WG (1973) Blueschists metamorphism and P–T regimes in active subduction zones. Tectonophysics 17:255–272

    Article  Google Scholar 

  • Evans BW (1990) Phase relations of epidote–blueschists. Lithos 25:3–23

    Article  Google Scholar 

  • Fleck RJ, Sutter JF, Elliot DH (1977) Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochim Cosmochim Acta 41:15–32

    Article  Google Scholar 

  • Franz G, Spear FS (1985) Aluminious titanite (sphene) from the Eclogite zone, south-central Tauern Window, Austria. Chem Geol 50:33–46

    Article  Google Scholar 

  • Gallastegui G (1993) Petrología del macizo granodiorítico de Baio-Vigo (Pontevedra, España). Universidad de Oviedo, Oviedo, p 356 (unpub.)

  • Gerya TV, Stöckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in subduction channel: a numerical simulation. Tectonics 21. doi:10.1029/2002TC001406

  • Gil Ibarguchi JI, Ortega Gironés E (1985) Petrology, structure and geotectonic implications of glaucophane-bearing eclogites and related rocks fromthe Malpica–Tuy unit, Galicia, northwest Spain. Chem Geol 50:145–162

    Article  Google Scholar 

  • Gómez Barreiro J, Martínez Catalán JR, Arenas R, Castiñeiras P, Abati J, Díaz García F, Wijbrans JR (2007) Tectonic evolution of the upper allochthon of the Órdenes Complex (northwestern Iberian Massif): structural constraints to a polyorogenic peri-Gondwanan terrane. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision, vol 423. Geol Soc Am Bull Special Paper, pp 315–332

  • Gómez Barreiro J, Martínez Catalán JR, Díez Fernández R, Arenas R, Díaz García F (2010) Upper crust reworking during gravitational collapse: the Bembibre–Pico Sacro detachment system (NW Iberia). J Geol Soc Lond 167:769–784

    Article  Google Scholar 

  • González Lodeiro F, Hernández Urroz J, Martínez Catalán J, Naval Balbin A, Ortega Girones E, de Pablo Macía G (1984) Santiago de Compostela. Mapa Geológico de España E 1:200000. Instituto Geológico y Minero de España, Madrid

  • Gottardi R, Kao PH, Saar MO, Teyssier C (2013) Effects of permeability fields on fluid, heat, and oxygen isotope transport in extensional detachment systems. Geochem Geophy Geosyst 14:1493–1522

    Article  Google Scholar 

  • Grasemann B, Fritz H, Vannay JC (1999) Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India); implications for a decelerating strain path and the extrusion of orogenic wedges. J Struct Geol 21:837–853

    Article  Google Scholar 

  • Harlov D, Tropper P, Seifert W, Nijland T, Förster HJ (2006) Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2. Lithos 88:72–84

    Article  Google Scholar 

  • Harrison T, Célérier J, Aikman A, Hermann J, Heizler J (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051

    Article  Google Scholar 

  • Heinrich W, Althaus E (1988) Experimental determination of the reactions 4 lawsonite + 1 albite = 1 paragonite + 2 zoisite + 2 quartz + 6 H2O and 4 lawsonite + 1 jadeite = 1 paragonite + 2 zoisite + 1 quartz + 6 H2O. Neues Jb Miner Monat 11:516–528

    Google Scholar 

  • Holényi K, Annerstein H (1987) Iron in titanite: a Mössbauer-spectroscopy study. Can Mineral 25:429–433

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland TJB, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501

    Article  Google Scholar 

  • Holland TJB, Baker J, Powell R (1998) Mixing properties and activity-composition and relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. Eur J Mineral 10:395–406

    Google Scholar 

  • Le Bayon B, Pitra P, Ballèvre M, Bohn M (2006) Reconstructing P–T paths during continental collision using multi-stage garnet (Gran Paradiso nappe, Western Alps). J Metamorph Geol 24:477–496

    Article  Google Scholar 

  • Lee JKW (1995) Multipath diffusion in geochronology. Contrib Mieral Petrol 120:60–82

    Article  Google Scholar 

  • Liou JG (1981) Petrology of metamorphosed oceanic rocks in the Central Range of Taiwan. Mem Geol Soc China 4:291–342

    Google Scholar 

  • Liou JG, Zhang RY, Ernst WG, Rumble D III, Maruyama S (1998) High pressure minerals from deeply subducted metamorphic rocks. In: Hemley RJ (ed) Ultrahigh-pressure mineralogy: physics and chemistry of the earth’s deep interior. Rev Miner 37:33–96

  • Lister GS, Baldwin SL (1996) Modelling the effect of arbitrary P-T-t histories on argon diffusion in minerals using the MacArgon program for the Apple Mcintosh. Tectonophysics 253:83–109

    Article  Google Scholar 

  • Llana-Fúnez S (2001) La estructura de la unidad de Malpica–Tui (Cordillera varisca en Iberia). In: Serie de Tesis Doctorales 1, vol. Instituto Geológico y Minero de España, Madrid, p 295

  • Llana-Fúnez S, Marcos A (2002) Structural record during exhumation and emplacement of high-pressure-low-to intermediate-temperature rocks in the Malpica–Tui unit (Variscan Belt of Iberia). In: Martínez Catalán JR, Hatcher RD Jr, Arenas R, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the late Paleozoic bassamen, vol 364. Geol Soc Am Bull Special Paper, pp 125–142

  • López-Carmona A, Abati J, Reche J (2010) Petrologic modeling of chloritoid-glaucophane schists from the NW Iberian Massif. Gondwana Res 17:377–391

    Article  Google Scholar 

  • López-Carmona A, Kusky TM, Santosh M, Abati J (2011) P-T and structural constraints of lawsonite and epidote blueschists from Liberty Creek and Seldovia: tectonic implications for early stages of subduction along the southern Alaska convergent margin. Lithos 121:100–116

    Article  Google Scholar 

  • López-Carmona A, Pitra P, Abati J (2013) Blueschist-facies metapelites from the Malpica–Tui Unit (NW Iberian Massif): phase equilibria modelling and H2O and Fe2O3 influence in high-pressure assembalges. J Metamorph Geol 31:263–280

    Article  Google Scholar 

  • Lyubetskaya T, Ague JJ (2009) Modeling the magnitudes and directions of regional metamorphic fluid flow in collisional orogens. J Petrol 50:1505–1531

    Article  Google Scholar 

  • Manon MR (2008) Heat capacity of high pressure minerals and phase equilibria of Cretan blueschists. Michigan: The University of Michigan, pp 192 (unpub.)

  • Martínez Catalán JR, Arenas R, Díaz García F, Rubio Pascual FJ, Abati J, Marquínez J (1996) Variscan exhumation of a subducted Paleozoic continental margin: the basal units of the Ordenes Complex, Galicia, NW Spain. Tectonics 15:106–121

    Article  Google Scholar 

  • Martínez Catalán JR, Díaz García F, Arenas R, Abati J et al (2002) Thrust and detachment systems in the ordenes complex (northwestern Spain): implications for the Variscan-Appalachian geodynamics. In: Martínez Catalán JR, Hatcher RD, Arenas R, Diaz Garcia F (eds) Variscan-Appalachian dynamics: the building of the late Paleozoic basement: Geol Soc Am Bull Special Paper 364:163–182

  • Martínez Catalán JR, Arenas R, Díaz García F et al (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt. Geol Soc Am Bull Mem 200:403–423

    Article  Google Scholar 

  • Martínez Catalán JR, Arenas R, Abati J, Sánchez Martínez S et al (2009) A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. Comptes Rendus Geosci 341:114–126

    Article  Google Scholar 

  • Maruyama S, Liou JG, Terabayashi M (1996) Blueschists and eclogites of the world and their exhumation. Int Geol Rev 38:485–594

    Article  Google Scholar 

  • Meinhold G (2010) Rutile and its application in earth sciences. Earth Sci Rev 102:1–28

    Article  Google Scholar 

  • Miller C, Satir M, Frank W (1980) High pressure metamorphism in the Tauern Window. Mitteilungen der Österreichischen Geologischen Gesellschaft 71:89–97

    Google Scholar 

  • Newton RC, Fyfe WS (1976) High-pressure metamorphism. In: Bailey DK, Macdonald R (eds) The evolution of the crystalline rocks. Academic Press, London, pp 101–186

    Google Scholar 

  • Okamoto K, Maruyama S (1999) The high pressure stability limits of lawsonite in the MORB + H2O system. Am Mineral 84:362–373

    Google Scholar 

  • Ortega-Gutiérrez F, Solari LA, Solé J et al (2004) Polyphase, high-temperature eclogite-facies metamorphism in the Chuacus Complex, central Guatemala; petrology, geochronology, and tectonic implications. Int Geol Rev 46:445–470

    Article  Google Scholar 

  • Peacock SM (1987) Thermal effects of metamorphic fluids in subduction zones. Geology 15:1057–1060

    Article  Google Scholar 

  • Philippon M, Brun JP, Gueydan F (2009) Kinematic records of subduction and exhumation in the Ile de Groix Blueschist (Hercynian belt; Western France). J Struct Geol 31:1308–1321

    Article  Google Scholar 

  • Philippon M, Gueydan F, Pitra P, Brun JP (2013) Preservation of subduction-related prograde deformation in lawsonite pseudomorph-bearing rocks. J Metamorph Geol 31:571–583

    Article  Google Scholar 

  • Pitra P, Ballèvre M, Ruffet G (2010) Inverted metamorphic field gradient towards a Variscan suture zone (Champtoceaux Complex, Armorican Massif, France). J Metamorph Geol 28:183–208

    Article  Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6:173–204

    Article  Google Scholar 

  • Ring U, Brandon MT, Willett SD, Lister GS (1999) Exhumation processes. In: Ring U, Brandon MT, Lister GS, Willett SD (eds) Exhumation Processes: normal faulting, ductile flow and erosion. Geol Soc London Spec Publ, vol 154, pp 1–27

  • Rodríguez Aller J (2005) Recristalización y deformación de litologías supracorticales sometidas a metamorfismo de alta presión (Complejo de Malpica–Tui, NO del Macizo Ibérico), vol 29. O Castro, A Coruña, p 410

  • Rodríguez Aller J, Cosca MA, Gil Ibarguchi JI, Dallmeyer RD (2003) Strain partitioning and preservation of 40Ar/39Ar ages during Variscan exhumation of a subducted crust (Malpica–Tui complex, NW Spain). Lithos 70:111–139

    Article  Google Scholar 

  • Rubio Pascual FJ, Arenas R, Díaz García F, Martínez Catalán JR, Abati J (2002) Eclogites and eclogite-amphibolites from the Santiago Unit (Ordenes Complex, NW Iberian Massif, Spain): a case study of contrasting high-pressure metabasites in a context of crustal subduction. In: Martínez Catalán JR, Hatcher RD, Arenas R, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the late paleozoic basement. Geol Soc Am Bull Special Paper, pp 105–124

  • Ruffet G, Féraud G, Ballévre M, Kiénast J (1995) Plateau ages and excess argon in phengites: an 40Ar/39Ar laser probe study of Alpine micas (Sesia Zone, Western Alps, northern Italy). Chem Geol 121:327–343

    Article  Google Scholar 

  • Santos Zalduegui JF, Schärer U, Gil Ibarguchi JI (1995) Isotope constraints on the age and origin of magmatism and metamorphism in the Malpica–Tuy allochthon, Galicia, NW-Spain. Chem Geol 121:91–103

    Article  Google Scholar 

  • Schliestedt M, Matthews A (1987) Transformation of blueschist to greenschist facies rocks as a consequence of fluid infiltration, Sifnos (Cyclades), Greece. Contrib Mineral Petrol 9:237–250

    Article  Google Scholar 

  • Serrano-Pinto M, Casquet C, Ibarrola E, Corretgé LG, Portugal-Ferreira M (1988) Sintese geocronológica dos granitoides do macizo hesperico. In: Bea F et al (eds) Geologia de los granitoides y rocas asociadas del macizo Hespérico. Rueda, Madrid, pp 69–86

    Google Scholar 

  • Shelley D, Bossière G (1999) Ile de Groix: retrogression and structural developments in an extensional régime. J Struct Geol 21:1441–1445

    Article  Google Scholar 

  • Sherlock S, Kelley S, Inger S, Harris N, Okay A (1999) 40Ar–39Ar and Rb–Sr geochronology of high-pressure metamorphism and exhumation history of the Tavsanli Zone, NW Turkey. Contrib Mineral Petrol 137:46–58

    Google Scholar 

  • Smye AJ, Greenwood LV, Holland TJB (2010) Garnet-chloritoid-kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts. J Metamorph Geol 28:753–768

    Google Scholar 

  • Souche A, Medvedev S, Andersen TB, Dabrowski M (2013) Shear heating in extensional detachments: implications for the thermal history of the Devonian basins of W Norway. Tectonophysics. doi:10.1016/j.tecto.2013.07.005

    Google Scholar 

  • Stober I, Bucher K (2004) Fluid sinks within the earth’s crust. Geofluids 4:143–151

    Article  Google Scholar 

  • Stüwe K (1997) Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contrib Mineral Petrol 129:43–52

    Article  Google Scholar 

  • Tinkham DK, Zuluaga CA, Stowell HH (2003) Metapelite phase equilibria modelling in MnNCKFMASH: the effect of variable Al2O3 and MgO/(MgO + FeO) on mineral stability. Am Mineral 88:1174

    Google Scholar 

  • Tracy RJ (1982) Compositional zoning and inclusions in metamorphic minerals. In: Ferry JM (ed) Characterization of metamorphism through mineral equilibria. Mineralogical Society of America, Washington, pp 355–397

    Google Scholar 

  • Tropper P, Manning CE, Essene EJ (2002) The substitution of Al and F in titanite at high pressure and temperature: experimental constraints on phase relations and solid solution properties. J Petrol 43:1787–1814

    Article  Google Scholar 

  • Van Calsteren PWC, Boblrijk NAIM, Hereda EH et al (1979) Isotopic dating of older elements (including the Cabo Ortegal mafic-ultramafic complex) in the Hercynian Origen of NW Spain: manifestations of a presumed Early Paleozoic mantle-plume. Chem Geol 24:35–56

    Article  Google Scholar 

  • Vega-Granillo R, Talavera-Mendoza O, Meza-Figueroa D et al (2007) Pressure–temperature–time evolution of Paleozoic high-pressure rocks of the Acatlán Complex (southern Mexico): implications for the evolution of the Iapetus and Rheic Oceans. Geol Soc Am Bull Bull 119:1249–1264

    Article  Google Scholar 

  • Villa JE, Hermann IM, Müntener O, Trommsdorff V (2000) 40Ar-39Ar dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contrib Mineral Petrol 140:363–381

    Article  Google Scholar 

  • Walker JD, Geissman JW, Bowring SA, Babcock LE, compilers (2012) Geologic time scale v. 4.0: Geol Soc Am Bull doi:10.1130/2012.CTS004R3C

  • Warren CJ, Beaumont C, Jamieson RA (2008a) Deep subduction and rapid exhumation: role of crustal strength and strain weakening in continental subduction and ultrahigh-pressure rock exhumation. Tectonics 27:TC6002

    Article  Google Scholar 

  • Warren CJ, Beaumont C, Jamieson RA (2008b) Modelling tectonic styles and ultrahigh pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet Sci 267:129–145

    Article  Google Scholar 

  • Warren C, Sherlock S, Kelley S (2010) Interpreting high-pressure phengite 40Ar/39Ar laserprobe ages: an example from Saih Hatat, NE Oman. Contrib Mineral Petrol 161:991–1009

    Article  Google Scholar 

  • Warren CJ, Hanke F, Kelley SP (2012) When can muscovite 40Ar/39Ar dating constrain the timing of metamorphic exhumation? Chem Geol 291:79–86

    Article  Google Scholar 

  • Wheeler J (1996) DIFFARG: a program for simulating argon diffusion profiles in minerals. Comput Geosci 22:919–929

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Worley B (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 18:497–511

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527

    Article  Google Scholar 

  • Will T, Okrusch M, Schmädicke E, Chen G (1998) Phase relations in the greenschist-blueschist-amphibolite-eclogite facies in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O (NCFMASH), with application to metamorphic rocks from Samos, Greece. Contrib Mineral Petrol 132:85–102

    Article  Google Scholar 

  • Wing BA, Ferry JM (2002) Three-dimensional geometry of metamorphic fluid flow during Barrovian regional metamorphism from an inversion of combined petrologic and stable isotope data. Geology 30:639–642

    Article  Google Scholar 

  • Zuluaga CA, Stowell HH, Tinkham DK (2005) The effect of zoned garnet on metapelite pseudosection topology and calculatedmetamorphic P-T paths. Am Mineral 90:1619–1628

    Article  Google Scholar 

Download references

Acknowledgments

We thank C. Valdehita from the Universidad Complutense de Madrid for her technical support and advices in 40Ar/39Ar mineral separation. We appreciate the technical assistance of D.A. Archibald and H. Fournier from the Queen’s University 40Ar/39Ar Geochronology Laboratory. We are grateful to G. Gutiérrez-Alonso and J.Fernández-Suárez that kindly allow us to use their unpublished age constraints. Stimulating discussions with A. García-Casco, J.R. Martínez Catalán, M. Ballèvre and R. Arenas has considerably enriched the quality of this manuscript. We wish to thank the Executive Editor Dr. Tim Grove, Dr. Clare Warren and an anonymous referee, for their constructive comments and suggestions. This work was financially supported by the Spanish Project CGL2012-34618 (Ministerio de Economía y Competitividad) and an NSERC Discovery grant to JKWL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia López-Carmona.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

410_2014_987_MOESM2_ESM.doc

Table 2 Representative microprobe analyses in the minerals of the matrix foliation (S2) from sample CA. C–core; R–rim; g P-tail–crystallization tails; lawps pseudomorphs after lawsonite (DOC 86 kb)

410_2014_987_MOESM3_ESM.doc

Table 3 Representative microprobe analyses in the inclusions in garnet (S1 and S2 foliations in g1 and g2, respectively) from sample CA. C–core; R–rim (DOC 89 kb)

410_2014_987_MOESM4_ESM.doc

Table 4 Representative microprobe analyses in the minerals of the lawsonite pseudomoprhs from sample CA. C–core; R–rim (DOC 73 kb)

410_2014_987_MOESM5_ESM.doc

Table 5 Representative microprobe analyses in the minerals of the albite porphyroblasts from sample AG. C–core; R–rim (DOC 86 kb)

410_2014_987_MOESM6_ESM.doc

Table 6 Summary of the 40Ar/39Ar step-heating results and representative microprobe analysis on muscovites from samples MT1 and LM. XK = K/(Ca + Na + K); XCa = Ca/(Ca + Na + K). Mineral formulas were calculated using AX software (Holland and Powell, 2000 in Powell and Holland 2002 http:/www.esc.cam.ac.uk/research/research-groups/holland/ax) (DOC 67 kb)

410_2014_987_MOESM7_ESM.xls

Table 7 40Ar/39Ar analyses on muscovite concentrates from sample MT1. The plateau was inferred considering the steps indicated in bold italics. The age spectrum is shown in Fig. 7a (XLS 37 kb)

410_2014_987_MOESM8_ESM.xls

Table 8 40Ar/39Ar analyses on muscovite concentrates from sample LM. The plateau was inferred considering the steps indicated in bold italics. The age spectrum is shown in Fig. 7b (XLS 36 kb)

410_2014_987_MOESM9_ESM.xls

Table 9 40Ar/39Ar analyses on muscovite concentrates from sample LM. The plateau was inferred considering the steps indicated in bold italics. The age spectrum is shown in Fig. 7c (XLS 38 kb)

410_2014_987_MOESM10_ESM.xls

Table 10 40Ar/39Ar analyses of a single grain of muscovite from sample LM. The plateau was inferred considering the steps indicated in bold italics. The age spectrum is shown in Fig. 7d (XLS 33 kb)

410_2014_987_MOESM11_ESM.tif

Idealized stratigraphic column for the Ceán Unit in the Malpica–Tui Complex. Photographs showing field aspects of the Bembibre–Ceán Detachment (a), metasediments intercalated with metavolcanics (b), Ceán pelitic schists (c and k) and Cambre metabasic rocks (d-j). The intermediate part of the sequence is dominated by lawsonite and garnet-bearing amphibolites (d-f) that going upwards grade into greenschists with garnet porphyroblasts (g, i) that contain epidote-rich layers (h). The top of the succession is dominated by greenschists with albite porphyroblasts (j) and bituminous schists without garnet (k). Stars and arrows indicate the location of the photographs in each level. Sample locations are also indicated. The stratigraphic column is modified from Díez Fernández (2011) (TIFF 38141 kb)

410_2014_987_MOESM12_ESM.tif

Back-scattered electron images showing detailed textures in the Cambre metabasic rocks. (a) ilm replacing ru in the matrix foliation; (b-c) symplectitic intergrowth of Ca-amphiboles and ab in the S2-foliation; (d-e) Zoned amphiboles in crystallization tails in garnet; (f) act grain showing exolution lamellae of hb in the outermost rim of a type 2 garnet porphyroblast; (g) pa + mu intergrowth inside a cluster in a law-pseudomorph; (h) Incipient sph coronae around ru. Mineral abbreviations are after Holland and Powell (1998) (TIFF 25796 kb)

410_2014_987_MOESM13_ESM.tif

X-Ray maps and chemical profiles illustrating zoning of garnet porphyroblasts from the Cambre metabasic rocks. (a) Euhedral porphyroblasts displaying an optical zoning interpreted as types 1 and 2 garnets (profile 1). (b) Subidioblastic type 2 garnet grains in the matrix foliation (profile 2) and (c) included in the pseudomorphs (profiles 3). Thick dashed lines on the X-ray maps indicate the position of the profiles. C–core; R–rim (TIFF 7909 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Carmona, A., Abati, J., Pitra, P. et al. Retrogressed lawsonite blueschists from the NW Iberian Massif: PTt constraints from thermodynamic modelling and 40Ar/39Ar geochronology. Contrib Mineral Petrol 167, 987 (2014). https://doi.org/10.1007/s00410-014-0987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-0987-5

Keywords

Navigation