Skip to main content
Log in

Analysis of experimental data on divalent cation diffusion kinetics in aluminosilicate garnets with application to timescales of peak Barrovian metamorphism, Scotland

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present a new statistical framework to analyze the diffusion data for divalent cations (Fe, Mg, Mn, and Ca) in aluminosilicate garnet using published experimental data and an Arrhenius relationship that accounts for dependence on temperature, pressure, garnet unit-cell dimension, and oxygen fugacity. The regression is based on Bayesian statistics and is implemented by the Markov chain Monte Carlo approach. All reported experimental uncertainties are incorporated, and the data are weighted by the precision of the experimental conditions. We also include a new term, the inter-experiment bias, to compensate for possible inconsistencies among experiments and to represent any experimental variability not explicitly presented in the Arrhenius relationship (e.g., water content, defect density). At high temperatures where most experiments were conducted, the diffusion coefficients calculated with the new parameters agree well with previous diffusion models (e.g., Chakraborty and Ganguly in Contrib Mineral Petrol, 111:74–86, 1992; Carlson in Am Mineral, 91:1–11, 2006). However, the down-temperature extrapolation leads to notable differences at lower temperatures for common petrological applications. For example, at 600 °C, the diffusion coefficients of Fe and Mn are one half-to-one order of magnitude faster and the diffusion coefficient of Ca is about one order of magnitude slower than calculated with parameters in Carlson (2006). Our statistical analysis also provides well-defined uncertainty bounds for timescale estimates based on garnet diffusion profiles. Application of the newly derived coefficients indicates that the timescale of the thermal peak of Barrovian metamorphism (Dalradian belt of Scotland) is about four to seven times longer than that estimated using previously published diffusion coefficients. The peak is still geologically brief, however—of the order of 106 years (0.75 Myr +0.70/−0.36 Myr; ±1σ). This brevity requires pulsed advective heat input, as provided by syn-orogenic mafic magmatism in these rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ague JJ, Baxter EF (2007) Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth Planet Sci Lett 261:500–516

    Article  Google Scholar 

  • Ague JJ, Carlson WD (2013) Metamorphism as garnet sees it: the kinetics of nucleation and growth, equilibration, and diffusion relaxation. Elements 9:439–445

    Article  Google Scholar 

  • Ague JJ, Baxter EF, Eckert Jr. JO (2001) High \( f_{{{\text{O}}_{2} }} \) during sillimanite zone metamorphism of part of the Barrovian type locality, Scotland. J Petrol 42:1301–1320

  • Andrae R, Schulze-Hartung T, Melchior P (2010) Dos and don’ts of reduced chi squared. arXiv:1012.3754

  • Atherton MP (1977) The metamorphism of the Dalradian rocks of Scotland. Scott J Geol 13:331–370

    Article  Google Scholar 

  • Ayres M, Vance D (1997) A comparative study of diffusion profiles in Himalayan and Dalradian garnets: constraints on diffusion data and the relative duration of the metamorphic events. Contrib Mineral Petrol 128:66–80

    Article  Google Scholar 

  • Barrow G (1893) On an intrusion of muscovite-biotite gneiss in the south-eastern highlands of Scotland, and its accompanying metamorphism. Q J Geol Soc Lond 49:330–354

    Article  Google Scholar 

  • Baumgartner LP, Floess D, Podladtchikov Y, Foster CT (2010) Pressure gradients in garnet induced by diffusion relaxation of major element zoing. Geol Soc Am Abstr Prog 42:629

    Google Scholar 

  • Baxter EF, Scherer EE (2013) Garnet geochronology: timekeeper of tectonometamorphic processes. Elements 9:433–438

    Article  Google Scholar 

  • Baxter EF, Ague JJ, DePaolo DJ (2002) Prograde temperature-time evolution in the Barrovian type-locality constrained by Sm/Nd garnet ages from Glen Clova, Scotland. J Geol Soc 159:71–82

    Article  Google Scholar 

  • Baxter EF, Caddick MJ, Ague JJ (2013) Garnet: common mineral, uncommonly useful. Elements 9:415–419

    Article  Google Scholar 

  • Bertka CM, Holloway JR (1988) Martian mantle primary melts: An experimental study of iron-rich garnet lherzolite minimum melt composition. Proc Lunar Planet Sci 18:723–739

    Google Scholar 

  • Bertran-Alvarez Y, Jaoul O, Liebermann RC (1992) Fe-Mg interdiffusion in single crystal olivine at very high-pressure and controlled oxygen fugacity: technological advances and initial data at 7 GPa. Phys Earth Planet Inter 70:102–118

    Article  Google Scholar 

  • Borinski SA, Hoppe U, Chakraborty S, Ganguly J, Bhowmik SK (2012) Multicomponent diffusion in garnets I: general theoretical considerations and experimental data for Fe–Mg system. Contrib Mineral Petrol 164:571–586

    Article  Google Scholar 

  • Boyd FE, England JL (1960) Apparatus for phase equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750C. J Geophys Res 65:741–748

    Article  Google Scholar 

  • Brady JB (1995) Diffusion data for silicate minerals, glasses and liquids. AGU Ref Shelf 2:269–290

    Article  Google Scholar 

  • Buening DK, Buseck PR (1973) Fe–Mg lattice diffusion in olivine. J Geophys Res 78:6852–6862

    Article  Google Scholar 

  • Caddick MJ, Bickle MJ, Harris NBW, Holland TJB, Horstwood MSA, Parrish RR, Ahmad T (2007) Burial and exhumation history of a Lesser Himalayan schist: recording the formation of an inverted metamorphic sequence in NW India. Earth Planet Sci Lett 264:375–390

    Article  Google Scholar 

  • Caddick MJ, Konopasek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51:2327–2347

    Article  Google Scholar 

  • Carlson WD (2002) Scales of disequilibrium and rates of equilibration during metamorphism. Am Mineral 87:185–204

    Google Scholar 

  • Carlson WD (2006) Rates of Fe, Mg, Mn, and Ca diffusion in garnet. Am Mineral 91:1–11

    Article  Google Scholar 

  • Chakraborty S, Ganguly J (1991) Compositional zoning and cation diffusion in aluminosilicate garnets. In: Ganguly J (ed) Diffusion atomic ordering and mass transfer, advances in physical geochemistry, vol 8. Springer, New York, pp 120–175

    Chapter  Google Scholar 

  • Chakraborty S, Ganguly J (1992) Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib Mineral Petrol 111:74–86

    Article  Google Scholar 

  • Chakraborty S, Rubie DC (1996) Mg tracer diffusion in aluminosilicate garnets at 750–850 °C, 1 atm and 1300 °C, 8.5 GPa. Contrib Mineral Petrol 122:406–414

    Article  Google Scholar 

  • Cherniak DJ, Dimanov A (2010) Diffusion in pyroxene, mica and amphibole. Rev Mineral Geochem 72:641–690

    Article  Google Scholar 

  • Cherniak DJ, Ryerson FJ (1993) A study of strontium diffusion in apatite using Rutherford backscattering spectroscopy and ion implantation. Geochim Cosmochim Acta 57:4652–4662

    Google Scholar 

  • Christensen JN, Rosenfeld JL, DePaolo DJ (1989) Rates of tectonometamorphic processes from rubidium and strontium isotopes in garnet. Science 244:1465–1469

    Article  Google Scholar 

  • Cygan RT, Lasaga AC (1985) Self diffusion of magnesium in garnet at 750 °C to 900 °C. Am J Sci 109:57–77

    Google Scholar 

  • Dewey JF (2005) Orogeny can be very short. Proc Natl Acad Sci USA 102:15286–15293

    Article  Google Scholar 

  • Dewey JF, Mange MA (1999) Petrography of Ordovician and Silurian sediments in the western Irish Caledonides: traces of short-lived Ordovician continent-arc collision orogeny and the evolution of the Larentian Appalachian-Caledonian margin. In: MacNiocaill C, Ryan PD (eds) Continental tectonics, vol 164. Geol Soc Lond Spec Publ, London, pp 55–107

    Google Scholar 

  • Elphick SC, Ganguly J, Loomis TP (1985) Experimental determination of cation diffusivities in aluminosilicate garnets I. Experimental methods and interdiffusion data. Contrib Mineral Petrol 90:36–44

    Article  Google Scholar 

  • England PC, Thompson AB (1984) Pressure–temperature–time paths of regional metamorphism. I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928

    Article  Google Scholar 

  • Erambert M, Austrheim H (1993) The effect of fluid and deformation on zoning and inclusion patters in poly-metamorphic garnets. Contrib Mineral Petrol 115:204–214

    Article  Google Scholar 

  • Farver JR, Yund RA (1990) The effect of hydrogen, oxygen and water fugacity on oxygen diffusion in alkali feldspar. Geochim Cosmochim Acta 54:2953–2964

    Article  Google Scholar 

  • Faryad SW, Chakraborty S (2005) Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the Eastern Alps. Contrib Mineral Petrol 150:306–318

    Article  Google Scholar 

  • Florence FP, Spear FS (1991) Effects of diffusional modification of garnet growth zoning on PT path calculations. Contrib Mineral Petrol 107:487–500

    Article  Google Scholar 

  • Florence FP, Spear FS (1993) Influences of reaction history and chemical diffusion on PT calculations for staurolite schists from the Littleton Formation, northwestern New Hampshire. Am Mineral 78:345–359

    Google Scholar 

  • Florence FP, Spear FS (1995) Intergranular diffusion kinetics of Fe and Mg during retrograde metamorphism of a politic gneiss from the Adirondack Mountains. Earth Plant Sci Lett 134:329–340

    Article  Google Scholar 

  • Freer R, Edwards A (1999) An experimental study of Ca-(Mg, Fe) interdiffusion in silicate garnets. Contrib Mineral Petrol 134:370–379

    Article  Google Scholar 

  • French BM, Eugster HP (1965) Experimental control of oxygen fugacities by graphite-gas equilibriums. J Geophys Res 70:1529–1539

    Article  Google Scholar 

  • Friedrich AM, Hodges KV, Bowring SA, Martin MW (1999) Geochronological constraints on the magmatic, metamorphic and thermal evolution of the Connemara Caledonides, western Ireland. J Geol Soc Lond 156:1217–1230

    Article  Google Scholar 

  • Gaidies F, de Capitani C, Abart R, Schuster R (2008) Prograde garnet growth along complex PTt paths: results from numerical experiments on polyphase garnet from the Wolz Complex (Austroalpine basement). Contrib Mineral Petrol 155:673–688

    Article  Google Scholar 

  • Gaidies F, Pattison DRM, de Capitani C (2011) Toward a quantitative model of metamorphic nucleation and growth. Contrib Mineral Petrol 162:975–993

    Article  Google Scholar 

  • Ganguly J (2010) Cation diffusion kinetics in aluminosilicate garnets and geological applications. Rev Mineral Geochem 72:559–601

    Article  Google Scholar 

  • Ganguly J, Bhattacharya RN, Chakraborty S (1988) Convolution effect in the determination of compositional profiles and diffusion coefficients by microprobe step scans. Am Mineral 73:901–909

    Google Scholar 

  • Ganguly J, Cheng W, Chakraborty S (1998) Cation diffusion in aluminosilicate garnets: experimental determination in pyrope-almandine diffusion couples. Contrib Mineral Petrol 131:171–180

    Article  Google Scholar 

  • Geiger CA, Feenstra A (1997) Molar volumes of mixing of almandine-pyrope and almandine-spessartine garnets and the crystal chemistry and thermodynamic-mixing properties of the aluminosilicate garnets. Am Mineral 82:571–581

    Google Scholar 

  • Gerasimov VY (1987) An experimental study of interdiffusion of iron and magnesium in garnets. Dokl Acad Nauk SSSR 295:684–688

    Google Scholar 

  • Graham CM, Elphick SC (1991) Some experimental constraints on the role of hydrogen in oxygen and hydrogen diffusion and Al-Si interdiffusion in silicates. In: Ganguly J (ed) Diffusion atomic ordering and mass transfer, advances in physical geochemistry, vol 8. Springer, New York, pp 248–285

    Chapter  Google Scholar 

  • Hickmott DD, Shimizu N, Spear FS, Selverstone J (1987) Trace element zoning in a metamorphic garnet. Geology 15:573–576

    Article  Google Scholar 

  • Hier-Majumder S, Anderson IM, Kohlstedt DL (2005) Influence of protons on Fe-Mg interdiffusion in olivine. J Geophys Res 110:B02202

    Google Scholar 

  • Hollister LS (1966) Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science 154:1647–1651

    Article  Google Scholar 

  • Jakobsson S, Oskarsson N (1994) The system C–O in equilibrium with graphite at high pressure and temperature: an experimental study. Geochim Cosmochim Acta 8:9–17

    Article  Google Scholar 

  • Kelly ED, Carlson WD, Ketcham RA (2013a) Crystallization kinetics during regional metamorphism of porphyroblastic rocks. J Metamorph Geol 31:963–979

    Article  Google Scholar 

  • Kelly ED, Carlson WD, Ketcham RA (2013b) Magnitudes of departures from equilibrium during regional metamorphism of porphyroblastic rocks. J Metamorph Geol 31:981–1002

    Article  Google Scholar 

  • Kohn MJ (2004) Oscillatory- and sector-zoned garnets record cyclic (?) rapid thrusting in central Nepal. Geochem Geophys Geosyst 5:Q12014. doi:10.1029/2004GC000737

    Article  Google Scholar 

  • Kohn MJ (2014) Geochemical zoning in metamorphic minerals. In: Holland HD, Turekian KK (eds) The crust. Treatise on Geochemistry, vol 4, 2nd edn. Elsevier, Oxford, pp 249–280

    Chapter  Google Scholar 

  • Korenaga J, Karato S-I (2008) A new analysis of experimental data on olivine rheology. J Geophys Res 133:B02403

    Google Scholar 

  • Krawczynski MJ, Grove TL (2012) Experimental investigation of the influence of oxygen fugacity on the source depths for high titanium lunar ultramafic magmas. Geochim Cosmochim Acta 79:1–19

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Lasaga AC (1979) Multicomponent exchange and diffusion in silicate. Geochim Comochim Acta 43:455–469

    Article  Google Scholar 

  • Liu JS (2001) Monte Carlo strategies in scientific computing. Springer, New York

    Google Scholar 

  • Loomis TP, Ganguly J, Elphick SC (1985) Experimental determination of cation diffusivities in aluminosilicate garnets. II. Multicomponent simulation and tracer diffusion coefficients. Contrib Mineral Petrol 90:45–51

    Article  Google Scholar 

  • Lyubetskaya T, Ague JJ (2010a) Modeling metamorphism in collisional orogens intruded by magmas: I. Thermal evolution. Am J Sci 310:427–458

    Article  Google Scholar 

  • Lyubetskaya T, Ague JJ (2010b) Modeling metamorphism in collisional orogens intruded by magmas: II. Fluid flow and implications for Barrovian and Buchan metamorphism, Scotland. Am J Sci 310:427–458

    Article  Google Scholar 

  • Médard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091

    Article  Google Scholar 

  • Morioka M, Nagasawa H (1990) Ionic diffusion in olivine. In: Ganguly J (ed) Diffusion atomic ordering and mass transfer, advances in physical geochemistry, vol 8. Springer, New York, pp 176–197

    Chapter  Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of silicate garnet. Am Mineral 83:546–552

    Google Scholar 

  • Oliver GJH, Ghen F, Buchwaldt R, Hegner E (2000) Fast tectonometamorphism and exhumation in the type area of the Barrovian and Buchan zones. Geology 28:459–462

    Article  Google Scholar 

  • Perchuk AL, Burchard M, Schertl H-P, Maresch WV, Gerya TV, Bernhardt H-J, Vidal O (2009) Diffusion of divalent cations in garnet: multi-couple experiments. Contrib Mineral Petrol 158:573–592

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  • Reed BC (1989) Linear least-squares fits with errors in both coordinates. Am J Phys 57:642–646

    Article  Google Scholar 

  • Reverdatto VV, Polyansky QP (2004) Modelling of the thermal history of metamorphic zoning in the Connemara region (western Ireland). Tectonophysics 379:77–91

    Article  Google Scholar 

  • Righter K, Hauri EH (1998) Compatibility of rhenium in garnet during mantle melting and magma genesis. Science 280:1737–1741

    Article  Google Scholar 

  • Rubie DC, Karato S, Yan H, O’Neil HStC (1993a) Low differential stress and controlled chemical environment in multianvil high-pressure experiments. Phys Chem Mineral 20:315–322

    Article  Google Scholar 

  • Rubie DC, Ross CRII, Carroll MR, Elphick SC (1993b) Oxygen self-diffusion in Na2Si4O9 liquid up to 10 GPa and estimation of high-pressure melt viscosities. Am Mineral 78:574–582

    Google Scholar 

  • Schwandt CS, Cygan RT, Westrich HR (1995) Mg self-diffusion in pyrope garnet. Am Mineral 80:483–490

    Google Scholar 

  • Schwandt CS, Cygan RT, Westrich HR (1996) Ca self-diffusion in grossular garnet. Am Mineral 81:448–451

    Google Scholar 

  • Smit MA, Scherer EE, Mezger K (2013) Peak metamorphic temperatures from cation diffusion zoning in garnet. J Metamorph Geol 31:339–358

    Article  Google Scholar 

  • Smye AJ, Bickle MJ, Holland TJB, Parrish RR, Condon DJ (2011) Rapid formation and exhumation of the youngest Alpine eclogite: a thermal conundrum to Barrovian metamorphism. Earth Planet Sci Lett 306:193–204

    Article  Google Scholar 

  • Sorcar N, Hoppe U, Dasgupa S, Chakraborty S (2014) High-temperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India: Rapid cooling unrelated to exhumation? Contrib Mineral Petrol 167:1–34

    Google Scholar 

  • Spear FS (1991) On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. J Metamorph Geol 9:379–388

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure–temperature–time paths. Mineralogical Society of America, Washington DC

    Google Scholar 

  • Spear FS (2004) Fast cooling and exhumation of the Valhalla metamorphic core complex, southeastern British Columbia. Int Geol Rev 46:193–209

    Article  Google Scholar 

  • Spear FS (2011) Prograde P–T paths: How steep, how fast, and what they mean. AGU Fall Meeting 2011, abstract #V13G-01

  • Spear FS (2014) The duration of near-peak metamorphism from diffusion modelling of garnet zoning. J Metamorph Geol 32:903–914

    Article  Google Scholar 

  • Spear FS, Florence FP (1992) Thermobarometry in granulites: pitfalls and new approaches. Precambrian Res 55:209–241

    Article  Google Scholar 

  • Spear FS, Parrish RR (1996) Petrology and cooling rates of the Valhalla complex, British Columbia, Canada. J Petrol 37:733–765

    Article  Google Scholar 

  • Spear FS, Selverstone J (1983) Quantitative PT paths from zoned minerals: theory and tectonic applications. Contrib Mineral Petrol 83:348–357

    Article  Google Scholar 

  • Spear FS, Ashley KT, Webb LE, Thomas JB (2012) Ti diffusion in quartz inclusions: implications for metamorphic time scales. Contrib Mineral Petrol 164:977–986

    Google Scholar 

  • Storm LC, Spear FS (2005) Pressure, temperature and cooling rates of granulite facies migmatitic pelites from the southern Adirondack Highlands, New York. J Metamorph Geol 23:107–130

    Article  Google Scholar 

  • Tirone M, Ganguly J, Dohmen R, Langenhorst F, Herwig R, Becker H-W (2005) Rare earth diffusion kinetics in garnet: experimental studies and applications. Geochim Cosmochim Acta 69:2385–2398

    Article  Google Scholar 

  • Tracy RJ, Robinson P, Thompson AB (1976) Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. Am Mineral 61:762–775

    Google Scholar 

  • Vielzeuf D, Clemens JD (1992) The fluid-absent melting of phlogopite + quartz: experiments and models. Am Mineral 77:1206–1222

    Google Scholar 

  • Vielzeuf D, Saul A (2011) Uphill diffusion, zero-flux planes and transient chemical solitary waves in garnet. Contrib Mineral Petrol 161:683–702

    Article  Google Scholar 

  • Vielzeuf D, Baronnet A, Perchuk AL, Laporte D, Baker MB (2007) Calcium diffusivity in alumino-silicate garnets: an experimental and ATEM study. Contrib Mineral Petrol 154:153–170

    Article  Google Scholar 

  • Viete DR, Richards SW, Lister GS, Oliver GJH, Banks GJ (2010) Lithospheric-scale extension during Grampian orogenesis in Scotland. Geol Soc Lond Spec Publ 335:121–160

    Article  Google Scholar 

  • Viete DR, Hermann J, Lister GS, Stenhouse IR (2011a) The nature and origin of the Barrovian metamorphism, Scotland: diffusion length scales in garnet and inferred thermal time scales. J Geol Soc Lond 168:115–132

    Article  Google Scholar 

  • Viete DR, Forster MA, Lister GS (2011b) The nature and origin of the Barrovian metamorphism, Scotland: 40Ar/39Ar age patterns and the duration of metamorphism in the biotite zone. J Geol Soc Lond 168:133–146

    Article  Google Scholar 

  • Viete DR, Oliver GJH, Fraser GL, Forster MA, Lister GS (2013) Timing and heat sources for the Barrovian metamorphism, Scotland. Lithos 177:148–163

    Article  Google Scholar 

  • Vorhies SH, Ague JJ (2011) Pressure–temperature evolution and thermal regimes in the Barrovian zones, Scotland. J Geol Soc 168:1147–1166

    Article  Google Scholar 

  • Vorhies SH, Ague JJ, Schmitt AK (2013) Zircon growth and recrystallization during progressive metamorphism, Barrovian zones, Scotland. Am Mineral 98:219–230

    Article  Google Scholar 

  • Wang Z, Hiraga T, Kohlstedt DL (2004) Effect of H + on Fe-Mg interdiffusion in olivine, (Fe, Mg)2SiO4. Appl Phys Lett 85:201–211

    Google Scholar 

  • Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191

    Article  Google Scholar 

  • Watson EB, Baxter EF (2007) Diffusion in solid-earth systems. Earth Planet Sci Lett 253:307–327

    Article  Google Scholar 

  • Watson EB, Harrison TM, Ryerson FJ (1985) Diffusion of Sm, Sr, and Pd in fluorapatite. Geochim Cosmochim Acta 49:1813–1823

    Article  Google Scholar 

  • Wilbur DE, Ague JJ (2005) Chemical disequilibrium during garnet growth: Monte Carlo simulations of natural crystal morphologies. Geology 34:689–692

    Article  Google Scholar 

  • Zhang Y, Stolper EM, Wasserburg GJ (1991) Diffusion of a multi-species component and its role in oxygen and water transport in silicate. Earth Planet Sci Lett 103:228–240

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to J. Korenaga, S. Chakraborty, Y. Yu, and Y. Liang for helpful discussions and comments. The paper benefited from careful and constructive reviews by J. Ganguly and F.S. Spear. We thank T.L. Grove for editorial handling. Support from the National Science Foundation Directorate of Geosciences (NSF EAR-0948092 and EAR-1250269) and Yale University is gratefully acknowledged. This work was also supported in part by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center and by the National Science Foundation under Grant #CNS 08-21132 that partially funded acquisition of the facilities. MATLAB scripts developed in this study are available upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chu.

Ethics declarations

Conflicts of interest

This study was funded by National Science Foundation Directorate of Geosciences (NSF EAR-0948092 and EAR-1250269). The authors declare that they have no conflict of interest.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, X., Ague, J.J. Analysis of experimental data on divalent cation diffusion kinetics in aluminosilicate garnets with application to timescales of peak Barrovian metamorphism, Scotland. Contrib Mineral Petrol 170, 25 (2015). https://doi.org/10.1007/s00410-015-1175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1175-y

Keywords

Navigation