Skip to main content
Log in

Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate whether a period of continuous theta burst stimulation (cTBS) induces cortical plasticity and thus improves bradykinesia of the upper limb in Parkinson’s disease. In eight patients with Parkinson’s disease (two females; mean age: 68.5 ± 5 years; disease duration: 4 ± 3 years) electrophysiological (motor evoked potentials, contralateral and ipsilateral silent period) and behavioural (Purdue pegboard test, UPDRS motor subscore) parameters were evaluated before (baseline condition) and after a 40-s period of (1) real or (2) sham continuous theta burst stimulation over the primary motor cortex contralateral to the more affected body side off dopaminergic drugs. Compared to baseline, cTBS did change neither measures of cortical excitability nor behavioural measures. cTBS over the primary motor cortex does not impact on cortical excitability or motor function of the upper limb in Parkinson’s disease. We interpret these data to reflect impaired cortical plasticity in Parkinson’s disease. This study is an important contribution to the knowledge about impaired plasticity in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Young AB, Penney JB (2002) Biochemical and functional organization of the basal ganglia. In: Jankovic JJ, Tolosa E (eds) Lippincott Williams and Wilkins, Philadelphia

  2. Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  3. Rothwell J (2007) Transcranial magnetic stimulation as a method for investigating the plasticity of the brain in Parkinson’s disease and dystonia. Parkinsonism Relat Disord 13(Suppl 3):S417–S420

    Article  PubMed  Google Scholar 

  4. Morgante F, Espay AJ, Gunraj C, Lang AE, Chen R (2006) Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain 129:1059–1069

    Article  PubMed  Google Scholar 

  5. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  6. Suppa A, Ortu E, Zafar N et al (2008) Theta burst stimulation induces after-effects on contralateral primary motor cortex excitability in humans. J Physiol 586:4489–4500

    Article  CAS  PubMed  Google Scholar 

  7. Di Lazzaro V, Pilato F, Dileone M et al (2008) The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J Physiol 586:3871–3879

    Article  CAS  PubMed  Google Scholar 

  8. Di Lazzaro V, Pilato F, Saturno E et al (2005) Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J Physiol 565:945–950

    Article  CAS  PubMed  Google Scholar 

  9. Thickbroom GW (2007) Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res 180:583–593

    Article  PubMed  Google Scholar 

  10. Rothkegel H, Sommer M, Rammsayer T, Trenkwalder C, Paulus W (2009) Training effects outweigh effects of single-session conventional rTMS and theta burst stimulation in PD patients. Neurorehabil Neural Repair 23:373–381

    PubMed  Google Scholar 

  11. Lefaucheur JP, Drouot X, Von Raison F, Menard-Lefaucheur I, Cesaro P, Nguyen JP (2004) Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol 115:2530–2541

    Article  PubMed  Google Scholar 

  12. Sabatini U, Boulanouar K, Fabre N et al (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123(Pt 2):394–403

    Article  PubMed  Google Scholar 

  13. Crovitz HF, Zener K (1962) A group-test for assessing hand- and eye-dominance. Am J Psychol 75:271–276

    Article  CAS  PubMed  Google Scholar 

  14. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    CAS  PubMed  Google Scholar 

  15. Fahn S, Elton RL motUDC ed. (1987) The Unified Parkinson’s disease Rating Scale. McMillan Healthcare Information, Florham Park

  16. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  17. Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA (2001) Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry 49:460–463

    Article  CAS  PubMed  Google Scholar 

  18. Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    CAS  PubMed  Google Scholar 

  19. Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function–systematic review of controlled clinical trials. Mov Disord 24:357–363

    Article  PubMed  Google Scholar 

  20. Centonze D, Gubellini P, Picconi B, Calabresi P, Giacomini P, Bernardi G (1999) Unilateral dopamine denervation blocks corticostriatal LTP. J Neurophysiol 82:3575–3579

    CAS  PubMed  Google Scholar 

  21. Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12:4224–4233

    CAS  PubMed  Google Scholar 

  22. Valls-Sole J, Pascual-Leone A, Brasil-Neto JP, Cammarota A, McShane L, Hallett M (1994) Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology 44:735–741

    CAS  PubMed  Google Scholar 

  23. Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M (1994) Motor cortical inhibition and the dopaminergic system. Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson’s disease and drug-induced Parkinsonism. Brain 117(Pt 2):317–323

    Article  PubMed  Google Scholar 

  24. Priori A, Berardelli A, Inghilleri M, Polidori L, Manfredi M (1994) Electromyographic silent period after transcranial brain stimulation in Huntington’s disease. Mov Disord 9:178–182

    Article  CAS  PubMed  Google Scholar 

  25. Ueki Y, Mima T, Kotb MA et al (2006) Altered plasticity of the human motor cortex in Parkinson’s disease. Ann Neurol 59:60–71

    Article  PubMed  Google Scholar 

  26. Bagnato S, Agostino R, Modugno N, Quartarone A, Berardelli A (2006) Plasticity of the motor cortex in Parkinson’s disease patients on and off therapy. Mov Disord 21:639–645

    Article  PubMed  Google Scholar 

  27. Koch G, Brusa L, Carrillo F et al (2009) Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology 73:113–119

    Article  CAS  PubMed  Google Scholar 

  28. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    Article  CAS  PubMed  Google Scholar 

  29. Brusa L, Versace V, Koch G et al (2006) Low frequency rTMS of the SMA transiently ameliorates peak-dose LID in Parkinson’s disease. Clin Neurophysiol 117:1917–1921

    Article  PubMed  Google Scholar 

  30. Huang YZ, Rothwell JC, Lu CS, Wang J, Chen RS (2010) Restoration of motor inhibition through an abnormal premotor-motor connection in dystonia. Mov Disord 25(6):689–696

    PubMed  Google Scholar 

  31. Siebner HR, Lang N, Rizzo V et al (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank John C. Rothwell, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK, for supporting the data assessment and critical review of manuscript drafts. This study was supported by a grant of the “Felgenhauer-Stiftung zur Förderung junger Neurowissenschaftler”.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggers, C., Fink, G.R. & Nowak, D.A. Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson’s disease. J Neurol 257, 1669–1674 (2010). https://doi.org/10.1007/s00415-010-5597-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5597-1

Keywords

Navigation