Skip to main content

Advertisement

Log in

Role of aquaporins in hydrocephalus: what do we know and where do we stand? A systematic review

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

Glymphatic fluid circulation may be considered the lymphatic system of the brain and the main role of such system seems to be played by aquaporins (AQPs), a family of proteins which regulates water exchange, in particular AQP4 and 1. Alterations of glymphatic fluid circulation through AQPs variations are now emerging as central elements in the pathophysiology of different brain conditions, like hydrocephalus. This systematic review provides an insight about the role of AQPs in hydrocephalus establishment and compensation, investigating their possible role as diagnostic tools or therapeutic targets.

Methods

PubMed database was screened searching for the relevant existing literature in English language published until February 29th 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement.

Results

A total of 40 articles met the inclusion criteria for our systematic analysis. AQP4 resulted the most studied water channel, followed by AQP1. The changes in cerebrospinal fluid (CSF), brain parenchyma and choroid plexus (CP) in different hydrocephalus type were analyzed. Moreover, important pharmacological interactions regarding AQP and molecules or conditions were discussed. A very interesting result is the general consensus on increase of AQP4 in hydrocephalic patients, unless in patients suffering from idiopathic normal pressure hydrocephalus, where AQP4 shows a tendency in reduction.

Conclusion

AQP seem to play a central role in the pathophysiology of hydrocephalus and in its compensation mechanisms. Further studies are required to definitively establish their precise roles and their quantitative changes to allow their utilization as diagnostic tools or therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data and materials support published claims and comply with field standards.

Code availability

Not applicable.

References

  1. Iliff JJ, Goldman SA, Nedergaard M (2015) Implications of the discovery of brain lymphatic pathways. Lancet Neurol 14:977–979. https://doi.org/10.1016/S1474-4422(15)00221-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid. Sci Transl Med 4:147111. https://doi.org/10.1126/scitranslmed.3003748

    Article  CAS  Google Scholar 

  3. Zeppenfeld DM, Simon M, Haswell JD et al (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74:91. https://doi.org/10.1001/jamaneurol.2016.4370

    Article  PubMed  Google Scholar 

  4. Rasmussen MK, Mestre H, Nedergaard M (2018) The glymphatic pathway in neurological disorders. Lancet Neurol 17:1016–1024. https://doi.org/10.1016/S1474-4422(18)30318-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599. https://doi.org/10.1007/s11064-015-1581-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farb R, Rovira À (2020) Hydrocephalus and CSF disorders. In: Hodler J, Kubik-Huch RA, von Schulthess GK (eds) Diseases of the brain, head and neck, spine 2020–2023: diagnostic imaging. Springer, Cham (CH)

    Google Scholar 

  7. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277. https://doi.org/10.1038/nrn3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakada T, Kwee IL (2019) Fluid dynamics inside the brain barrier: current concept of interstitial flow, glymphatic flow, and cerebrospinal fluid circulation in the brain. Neuroscientist 25:155–166. https://doi.org/10.1177/1073858418775027

    Article  PubMed  Google Scholar 

  9. Iliff JJ, Lee H, Yu M et al (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123:1299–1309. https://doi.org/10.1172/JCI67677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mestre H, Hablitz LM, Xavier AL et al (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7:e40070. https://doi.org/10.7554/eLife.40070

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo J, Mi X, Zhan R et al (2018) Aquaporin 4 silencing aggravates hydrocephalus induced by injection of autologous blood in rats. Med Sci Monit 24:4204–4212. https://doi.org/10.12659/MSM.906936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng X, Papadopoulos MC, Liu J et al (2009) Sporadic obstructive hydrocephalus in Aqp4 null mice. J Neurosci Res 87:1150–1155. https://doi.org/10.1002/jnr.21927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iliff J, Simon M (2019) CrossTalk proposal: The glymphatic system supports convective exchange of cerebrospinal fluid and brain interstitial fluid that is mediated by perivascular aquaporin-4. J Physiol (Lond) 597:4417–4419. https://doi.org/10.1113/JP277635

    Article  CAS  Google Scholar 

  14. Raneri F, Zella MAS, Di Cristofori A et al (2017) Supplementary tests in idiopathic normal pressure hydrocephalus: a single-center experience with a combined lumbar infusion test and tap test. World Neurosurg 100:567–574. https://doi.org/10.1016/j.wneu.2017.01.003

    Article  PubMed  Google Scholar 

  15. Locatelli M, Draghi R, Cristofori ADI et al (2014) Third ventriculostomy in late-onset idiopathic aqueductal stenosis treatment: a focus on clinical presentation and radiological diagnosis. Neurol Med Chir (Tokyo) 54:1014–1021. https://doi.org/10.2176/nmc.oa.2013-0367

    Article  Google Scholar 

  16. Wikkelso C, Hellstrom P, Klinge PM et al (2013) The European iNPH Multicentre Study on the predictive values of resistance to CSF outflow and the CSF Tap Test in patients with idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 84:562–568. https://doi.org/10.1136/jnnp-2012-303314

    Article  PubMed  Google Scholar 

  17. Marmarou A, Bergsneider M, Klinge P et al (2005) The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery 57:S2-17–S2-28. https://doi.org/10.1227/01.NEU.0000168184.01002.60

    Article  Google Scholar 

  18. Rizwan Siddiqui M, Attar F, Mohanty V et al (2018) Erythropoietin-mediated activation of aquaporin-4 channel for the treatment of experimental hydrocephalus. Childs Nerv Syst 34:2195–2202. https://doi.org/10.1007/s00381-018-3865-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding Y, Zhang T, Wu G et al (2019) Astrogliosis inhibition attenuates hydrocephalus by increasing cerebrospinal fluid reabsorption through the glymphatic system after germinal matrix hemorrhage. Exp Neurol 320:113003. https://doi.org/10.1016/j.expneurol.2019.113003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paul L, Madan M, Rammling M et al (2009) The altered expression of aquaporin 1 and 4 in choroid plexus of congenital hydrocephalus. Fluids Barriers CNS 6:S7. https://doi.org/10.1186/1743-8454-6-S1-S7

    Article  Google Scholar 

  21. Supuran CT (2015) Acetazolamide for the treatment of idiopathic intracranial hypertension. Expert Rev Neurother 15:851–856. https://doi.org/10.1586/14737175.2015.1066675

    Article  CAS  PubMed  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eide PK, Hansson H-A (2020) Blood-brain barrier leakage of blood proteins in idiopathic normal pressure hydrocephalus. Brain Res 1727:146547. https://doi.org/10.1016/j.brainres.2019.146547

    Article  CAS  PubMed  Google Scholar 

  24. Close LN, Zanaty M, Kirby P, Dlouhy BJ (2019) Acute hydrocephalus resulting from neuromyelitis optica: a case report and review of the literature. World Neurosurg 129:367–371. https://doi.org/10.1016/j.wneu.2019.05.177

    Article  PubMed  Google Scholar 

  25. Arighi A, Di Cristofori A, Fenoglio C et al (2019) Cerebrospinal fluid level of aquaporin4: a new window on glymphatic system involvement in neurodegenerative disease? JAD 69:663–669. https://doi.org/10.3233/JAD-190119

    Article  CAS  PubMed  Google Scholar 

  26. Castañeyra-Ruiz L, Hernández-Abad LG, Carmona-Calero EM et al (2019) AQP1 overexpression in the CSF of obstructive hydrocephalus and inversion of its polarity in the choroid plexus of a Chiari malformation type II case. J Neuropathol Exp Neurol 78:641–647. https://doi.org/10.1093/jnen/nlz033

    Article  CAS  PubMed  Google Scholar 

  27. Hamamoto Filho PT, Fogaroli MO, Oliveira MAC et al (2019) A rat model of neurocysticercosis-induced hydrocephalus: chronic progressive hydrocephalus with mild clinical impairment. World Neurosurg 132:e535–e544. https://doi.org/10.1016/j.wneu.2019.08.085

    Article  PubMed  Google Scholar 

  28. Long C-Y, Huang G-Q, Du Q et al (2019) The dynamic expression of aquaporins 1 and 4 in rats with hydrocephalus induced by subarachnoid haemorrhage. FN 57:182–195. https://doi.org/10.5114/fn.2019.86296

    Article  Google Scholar 

  29. Hasan-Olive MM, Enger R, Hansson H-A et al (2019) Pathological mitochondria in neurons and perivascular astrocytic endfeet of idiopathic normal pressure hydrocephalus patients. Fluids Barriers CNS 16:39. https://doi.org/10.1186/s12987-019-0160-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hasan-Olive MM, Enger R, Hansson H-A et al (2019) Loss of perivascular aquaporin-4 in idiopathic normal pressure hydrocephalus. Glia 67:91–100. https://doi.org/10.1002/glia.23528

    Article  PubMed  Google Scholar 

  31. Trillo-Contreras JL, Ramírez-Lorca R, Hiraldo-González L et al (2018) Combined effects of aquaporin-4 and hypoxia produce age-related hydrocephalus. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 1864:3515–3526. https://doi.org/10.1016/j.bbadis.2018.08.006

    Article  CAS  Google Scholar 

  32. Jeon T, Park K-S, Park S-H et al (2017) Expression of aquaporin 1 and 4 in the choroid plexus and brain parenchyma of kaolin-induced hydrocephalic rats. Korean J Neurotrauma 13:68. https://doi.org/10.13004/kjnt.2017.13.2.68

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eide PK, Hansson H-A (2017) Astrogliosis and impaired aquaporin-4 and dystrophin systems in idiopathic normal pressure hydrocephalus. Neuropathol Appl Neurobiol 44:474–490. https://doi.org/10.1111/nan.12420

    Article  CAS  PubMed  Google Scholar 

  34. Limbrick DD, Baksh B, Morgan CD et al (2017) Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS ONE 12:e0172353. https://doi.org/10.1371/journal.pone.0172353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo Y, Weigand SD, Popescu BF et al (2017) Pathogenic implications of cerebrospinal fluid barrier pathology in neuromyelitis optica. Acta Neuropathol 133:597–612. https://doi.org/10.1007/s00401-017-1682-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmidt MJ, Rummel C, Hauer J et al (2016) Increased CSF aquaporin-4, and interleukin-6 levels in dogs with idiopathic communicating internal hydrocephalus and a decrease after ventriculo-peritoneal shunting. Fluids Barriers CNS 13:12. https://doi.org/10.1186/s12987-016-0034-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gu W, Li F, Zhang PJ (2016) Expression and significance of aquaporin protein in Sprague–Dawley rats after experimental intraventricular hemorrhage. Cell Mol Biol 62:59–62. https://doi.org/10.14715/cmb/2016.62.4.11

    Article  CAS  PubMed  Google Scholar 

  38. Castañeyra-Ruiz L, González-Marrero I, Carmona-Calero EM et al (2016) Cerebrospinal fluid levels of tumor necrosis factor alpha and aquaporin 1 in patients with mild cognitive impairment and idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 146:76–81. https://doi.org/10.1016/j.clineuro.2016.04.025

    Article  PubMed  Google Scholar 

  39. Ortega E, Muñoz RI, Luza N et al (2016) The value of early and comprehensive diagnoses in a human fetus with hydrocephalus and progressive obliteration of the aqueduct of Sylvius: case report. BMC Neurol 16:45. https://doi.org/10.1186/s12883-016-0566-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blasco E, Martorell J, De la Fuente C, Pumarola M (2014) Immunohistochemical study of aquaporins in an African Grey Parrot (Psittacus erithacus) with hydrocephalus. J Avian Med Surg 28:309–315. https://doi.org/10.1647/2013-059

    Article  PubMed  Google Scholar 

  41. Sveinsdottir S, Gram M, Cinthio M et al (2014) Altered expression of aquaporin 1 and 5 in the choroid plexus following preterm intraventricular hemorrhage. Dev Neurosci 36:542–551. https://doi.org/10.1159/000366058

    Article  CAS  PubMed  Google Scholar 

  42. Castañeyra-Ruiz L, González-Marrero I, González-Toledo JM et al (2013) Aquaporin-4 expression in the cerebrospinal fluid in congenital human hydrocephalus. Fluids Barriers CNS 10:18. https://doi.org/10.1186/2045-8118-10-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skjolding AD, Holst AV, Broholm H et al (2013) Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain: AQP4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol 39:179–191. https://doi.org/10.1111/j.1365-2990.2012.01275.x

    Article  CAS  PubMed  Google Scholar 

  44. Roales-Buján R, Páez P, Guerra M et al (2012) Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 124:531–546. https://doi.org/10.1007/s00401-012-0992-6

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aghayev K, Bal E, Rahimli T et al (2012) Aquaporin-4 expression is not elevated in mild hydrocephalus. Acta Neurochir 154:753–759. https://doi.org/10.1007/s00701-011-1241-9

    Article  PubMed  Google Scholar 

  46. Paul L, Madan M, Rammling M et al (2011) Expression of aquaporin 1 and 4 in a congenital hydrocephalus rat model. Neurosurgery 68:462–473. https://doi.org/10.1227/NEU.0b013e3182011860

    Article  PubMed  Google Scholar 

  47. Wang D, Nykanen M, Yang N et al (2011) Altered cellular localization of aquaporin-1 in experimental hydrocephalus in mice and reduced ventriculomegaly in aquaporin-1 deficiency. Mol Cell Neurosci 46:318–324. https://doi.org/10.1016/j.mcn.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  48. Skjolding AD, Rowland IJ, Søgaard LV et al (2010) Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Fluids Barriers CNS 7:20. https://doi.org/10.1186/1743-8454-7-20

    Article  CAS  Google Scholar 

  49. Tourdias T, Dragonu I, Fushimi Y et al (2009) Aquaporin 4 correlates with apparent diffusion coefficient and hydrocephalus severity in the rat brain: a combined MRI—histological study. NeuroImage 47:659–666. https://doi.org/10.1016/j.neuroimage.2009.04.070

    Article  PubMed  Google Scholar 

  50. Smith ZA, Moftakhar P, Malkasian D et al (2007) Choroid plexus hyperplasia: surgical treatment and immunohistochemical results: case report. J Neurosurg Pediatr 107:255–262. https://doi.org/10.3171/PED-07/09/255

    Article  Google Scholar 

  51. Shen XQ, Miyajima M, Ogino I, Arai H (2006) Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J Neurosurg Pediatr 105:459–464. https://doi.org/10.3171/ped.2006.105.6.459

    Article  Google Scholar 

  52. Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23:2929–2936. https://doi.org/10.1111/j.1460-9568.2006.04829.x

    Article  PubMed  Google Scholar 

  53. Longatti P, Basaldella L, Orvieto E et al (2006) Aquaporin(s) expression in choroid plexus tumours. Pediatr Neurosurg 42:228–233. https://doi.org/10.1159/000092359

    Article  PubMed  Google Scholar 

  54. Bloch O, Auguste KI, Manley GT, Verkman A (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26:1527–1537. https://doi.org/10.1038/sj.jcbfm.9600306

    Article  CAS  PubMed  Google Scholar 

  55. Oshio K, Watanabe H, Song Y et al (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel aquaporin-1. FASEB J 19:76–78. https://doi.org/10.1096/fj.04-1711fje

    Article  CAS  PubMed  Google Scholar 

  56. Clardy SL, Lucchinetti CF, Krecke KN et al (2014) Hydrocephalus in neuromyelitis optica. Neurology 82:1841–1843. https://doi.org/10.1212/WNL.0000000000000428

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gratton S, Mora C (2013) Unexplained hydrocephalus in a patient with neuromyelitis optica. In: Proceedings of the 2012 North American Neuro-Ophthalmology Society, San Antonio, TX, USA

  58. Eide PK, Eidsvaag VA, Nagelhus EA, Hansson H-A (2016) Cortical astrogliosis and increased perivascular aquaporin-4 in idiopathic intracranial hypertension. Brain Res 1644:161–175. https://doi.org/10.1016/j.brainres.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  59. Leinonen V, Koivisto AM, Savolainen S et al (2010) Amyloid and tau proteins in cortical brain biopsy and Alzheimer’s disease. Ann Neurol 68:446–453. https://doi.org/10.1002/ana.22100

    Article  CAS  PubMed  Google Scholar 

  60. Golomb J, Wisoff J, Miller DC et al (2000) Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. J Neurol Neurosurg Psychiatry 68:778–781. https://doi.org/10.1136/jnnp.68.6.778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tarasoff-Conway JM, Carare RO, Osorio RS et al (2015) Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol 11:457–470. https://doi.org/10.1038/nrneurol.2015.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kress BT, Iliff JJ, Xia M et al (2014) Impairment of paravascular clearance pathways in the aging brain: paravascular clearance. Ann Neurol 76:845–861. https://doi.org/10.1002/ana.24271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reeves BC, Karimy JK, Kundishora AJ et al (2020) Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol Med 26:285–295. https://doi.org/10.1016/j.molmed.2019.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bateman GA (2013) Hypertensive slit ventricle syndrome: pseudotumor cerebri with a malfunctioning shunt? JNS 119:1503–1510. https://doi.org/10.3171/2013.7.JNS13390

    Article  Google Scholar 

  65. Hamilton K, Koueik J, Maganti R, Iskandar B (2019) Slit ventricle syndrome leads to 10-year history of repetitive transient central herniation masquerading as seizures: hydrocephalus case report. World Neurosurg 126:134–138. https://doi.org/10.1016/j.wneu.2019.02.106

    Article  PubMed  Google Scholar 

  66. Sivaganesan A, Krishnamurthy R, Sahni D, Viswanathan C (2012) Neuroimaging of ventriculoperitoneal shunt complications in children. Pediatr Radiol 42:1029–1046. https://doi.org/10.1007/s00247-012-2410-6

    Article  PubMed  Google Scholar 

  67. Del Bigio MR, Di Curzio DL (2016) Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS. https://doi.org/10.1186/s12987-016-0025-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that they have no sources of funding.

Author information

Authors and Affiliations

Authors

Contributions

Concept of the article: AC, CL. Literature search and data analysis: CL, AC. Draft of the article: AC, CL, AA. Critically revision of the article: all authors.

Corresponding author

Correspondence to Andrea Di Cristofori.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest/competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Integrity of research and reporting

The manuscript does not contain clinical studies or patient data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Laurentis, C., Cristaldi, P., Arighi, A. et al. Role of aquaporins in hydrocephalus: what do we know and where do we stand? A systematic review. J Neurol 268, 4078–4094 (2021). https://doi.org/10.1007/s00415-020-10122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10122-z

Keywords

Navigation