Skip to main content
Log in

The influence of various toxic effects on the cornea and changes in corneal light transmission

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Normal corneal hydration is necessary for the maintenance of corneal transparency. Damage of the corneal epithelium or endothelium by various external influences disturbs the mechanism by which the cornea maintains normal hydration and transparency. The cornea swells, and the corneal thickness increases, resulting in increased scatter and the development of corneal opacity. The transmission of light across the cornea is changed. The purpose of this study is to investigate spectrophotometrically the corneal light transmission under the influence of the various factors affecting the cornea.

Methods

We developed a spectrophotometric method to measure the light transmission across the cornea under the influence of various factors affecting the cornea, such as treatment with 0.9% NaCl, saline, or phosphate buffered saline (PBS), solutions employed as placebo eye drops (negative controls) in experimental studies, agents toxic to the cornea, such as diluted acids or alkalis. The method distinguishes between changes in corneal light transmission caused by altered corneal thickness (the level of hydration) and changes resulting from other corneal disturbances which in turn affect corneal light transmission.

Results

The results obtained show that the corneal light transmission is decreased following the application of toxic substances on the corneal surface. This decrease is highly dependent on the severity of the corneal injury evoked by individual noxes, and the resulting changes in corneal hydration and transparency.

Conclusions

The influence of various influences applied to the cornea, manifested as changes in corneal light transmission, can be measured using our spectrophotometric method with a high degree of sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Čejka Č, Pláteník J, Guryca V, Širc J, Michálek J, Brůnová B, Čejková J (2007) Light absorption properties of the rabbit cornea repeatedly irradiated with UVB rays. Photochem Photobiol 83:652–657

    Article  PubMed  Google Scholar 

  2. Čejka Č, Pláteník J, Buchal R, Guryca V, Širc J, Vejražka M, Crkovská J, Ardan T, Michálek J, Brůnová B, Čejková J (2009) Effect of two different UVA doses on the rabbit cornea and lens. Photochem Photobiol 85:794–800

    Article  PubMed  Google Scholar 

  3. Čejka Č, Pláteník J, Širc J, Ardan T, Michálek J, Brůnová B, Čejková J (2009) Changes of corneal optical properties after UVB irradiation investigated spectrophotometrically. Physiol Res PMID 19929139

  4. Lagali N, Fagerholm P (2008) Corneal injury by formic acid: one-year clinical course and in-vivo confocal microscopic evaluation. Clin Experiment Ophthalmol 36:692–694

    Article  PubMed  Google Scholar 

  5. Merle H, Gérard M, Schrage N (2008) Ocular burns (in French). J Fr Ophthalmol 31:723–734

    Article  CAS  Google Scholar 

  6. Chen M, Matsuda H, Wang L, Watanabe T, Kimura MT, Igarashi J, Wang X, Sakimoto T, Fukuda N, Sawa M, Nagase H (2009) Pretranscriptional regulation of TGF-beta1 by PI polyamide prevents scarring and accelerates wound healing of the cornea after exposure to alkali. Mol Ther 18:519–527

    Article  PubMed  Google Scholar 

  7. Zhao B, Ma A, Martin FL, Fullwood NJ (2009) An investigation into corneal alkali burns using an organ culture model. Cornea 28:541–546

    Article  CAS  PubMed  Google Scholar 

  8. Reim M, Schrage NF, Becker J (2001) Interactions between ocular surface fluid and cornea related to contact lenses. Eur J Ophthalmol 11:105–116

    CAS  PubMed  Google Scholar 

  9. Monti D, Chetoni P, Burgalassi S, Najarro M, Saettone MF (2002) Increased corneal hydration induced by potential ocular penetration enhancers: assessment by differential scanning calorimetry (DSC) and by desiccation. Int J Pharm 232:139–147

    Article  CAS  PubMed  Google Scholar 

  10. Marino C, Paladino GM, Scuderi AC, Trombetta F, Mugridge K, Enea V (2005) In vivo toxicity of netilmicin and ofloxacin on intact and mechanically damaged eyes of rabbit. Cornea 24:710–716

    Article  PubMed  Google Scholar 

  11. Chan KC, Kim MK, Wee WR, Lee JH (2008) Corneal endothelial dysfunction associated with amantadine toxicity. Cornea 27:1182–1185

    Article  Google Scholar 

  12. Hughes EH, Pretorius MH, Eleftheriadis H, Liu CS (2007) Long-term recovery of the human corneal endothelium after toxic injury by benzalkonium chloride. Br J Ophthalmol 91:1460–1463

    Article  CAS  PubMed  Google Scholar 

  13. Jiang J, Wu M, Shen T (2009) The toxic effect of different concentrations of povidone iodine on the rabbit's cornea. Cutan Ocul Toxicol 28:119–124

    Article  CAS  PubMed  Google Scholar 

  14. López-López JM, Sanabria MR, de Prada SJ (2008) Ocular toxicity caused by toad venom. Cornea 27:236–237

    Article  PubMed  Google Scholar 

  15. Sandboe FD, Medin W, Bjerkness R (1998) Toxicity of vancomycin on corneal endothelium in rabbits. Acta Ophthalmol Scand 76:675–678

    Article  CAS  PubMed  Google Scholar 

  16. Al-Mezaine HS, Al-Amry MA, Al-Assiri A, Fadel TS, Tabbara KF, Al-Rajhi AA (2008) Corneal endothelial cytotoxicity of the Calotropis procera (ushaar) plant. Cornea 27:504–506

    Article  PubMed  Google Scholar 

  17. Cullen AP (2009) Photobiology of the cornea. In: Photobiological Sciences Online (KC Smith, ed.). American Society for Photobiology http://www.photobiology.info/ 01/24/09

  18. Maurice DM (1957) The structure and transparency of the cornea. J Physiol 136:263–286

    CAS  PubMed  Google Scholar 

  19. Twersky V (1975) Transparency of pair-correlated, random distributions of small scatterers, with applications to the cornea. J Opt Soc Am 65:524–530

    Article  CAS  PubMed  Google Scholar 

  20. Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S (2003) Transparency, swelling and scarring in the corneal stroma. Eye 17:927–936

    Article  CAS  PubMed  Google Scholar 

  21. Meek KM, Dennis S, Khan S (2003) Changes in refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys J 85:2205–2212

    Article  CAS  PubMed  Google Scholar 

  22. Cullen AP, Chou BR, Hall MG, Jany SE (1984) Ultraviolet-B damages corneal endothelium. Am J Optom Physiol Opt 61:473–478

    CAS  PubMed  Google Scholar 

  23. Young AR (2006) Acute effects of UVR on human eyes and skin. Prog Biophys Mol Biol 92:80–85

    Article  CAS  PubMed  Google Scholar 

  24. Doughty MJ, Cullen AP (1989) Long-term effects of a single dose of ultraviolet-B on albino rabbit cornea. In vivo analyses. Photochem Photobiol 49:185–196

    Article  CAS  PubMed  Google Scholar 

  25. Koliopoulos JX, Margaritis LH (1979) Reponse of the cornea to far ultraviolet light: an ultrastructural study. Ann Ophthalmol 11:765–769

    CAS  PubMed  Google Scholar 

  26. Haaskjold E, Olsen WM, Bjerknes R, Kravik K (1993) Early cell kinetic effects of a single dose of narrow-banded ultraviolet B irradiation on the rat corneal epithelium. Photochem Photobiol 57:663–666

    Article  CAS  PubMed  Google Scholar 

  27. Podskochy A (2004) Protective role of corneal epithelium against ultraviolet radiation damage. Acta Ophthalmol Scand 82:714–717

    Article  PubMed  Google Scholar 

  28. Rogers CS, Chan LM, Sims YS, Byrd KD, Hinton DL, Twining SS (2004) The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Exp Eye Res 78:1007–1014

    Article  CAS  PubMed  Google Scholar 

  29. Pauloin T, Dutot MF, Joly F, Warnet JM, Rat P (2009) High molecular weight hyaluronan decreases UVB-induced apoptosis and inflammation in human epithelial corneal cells. Mol Vision 15:577–583

    CAS  Google Scholar 

  30. Downes JE, VandeBerg JL, Hubbard GH, Holmes RS (1992) Regional distribution of mammalian corneal aldehyde dehydrogenase and alcohol dehydrogenase. Cornea 11:560–566

    Article  CAS  PubMed  Google Scholar 

  31. Čejková J, Štípek S, Crkovská JT, Ardan T (2000) Changes of antioxidant enzymes in the cornea of albino rabbits irradiated with UVB rays. Histochemical and biochemical study. Histol Histopathol 15:1043–1050

    PubMed  Google Scholar 

  32. Lodovici ML, Raimondi F, Guglielmi S, Gemignani S, Dolara P (2003) Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells (SIRC) by 4-coumaric acid. Toxicology 184:141–147

    Article  CAS  PubMed  Google Scholar 

  33. Manzer R, Pappa A, Estey T, Sladek N, Carpenter F (2003) Vasiliou V (2003) Ultraviolet radiation decreases expression and induces aggregation of corneal ALDH3A1. Chemico-Biol Interactions 143–144:45–53

    Article  Google Scholar 

  34. Tessem MB, Midelfart A, Čejková J, Bathen TF (2006) Effect of UVA and UVB irradiation on the metabolic profile of rabbit cornea and lens analysed by HR-MAS 1H NMR spectroscopy. Ophthalmic Res 38:105–114

    Article  PubMed  Google Scholar 

  35. Čejková J, Ardan T, Čejka Č, Kovačeva J, Zídek Z (2005) Irradiation of the rabbit cornea with UVB rays stimulates the expression of nitric oxide synthase-generated nitric oxide and the formation of cytotoxic nitrogen-related oxidants. Histol Histopathol 20:467–473

    PubMed  Google Scholar 

  36. Bolková A, Obenberger J (1976) Changes of activity of alkaline and acid phosphatase in the rabbit eye in the early phase of alkaline and acid injury. Graefe's Arch Clin Exp Ophthalmol 200:251–255

    Article  PubMed  Google Scholar 

  37. Čejková J, Lojda Z, Salonen EM, Vaheri A (1989) Histochemical study of alkali-burned rabbit anterior eye segment in which severe lesions were prevented by aprotinin treatment. Histochemistry 92:441–448

    Article  PubMed  Google Scholar 

  38. Saika S, Ikeda KO, Yamanaka OT, Milyamoto T, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Nakajima Y, Kao WW, Flanders KC, Roberts AB (2005) Expression of Smad7 in mouse eyes accelerates healing of corneal tissue after exposure to alkali. Am J Pathol 166:1405–1418

    CAS  PubMed  Google Scholar 

  39. Saika S, Yamanaka O, Okada Y, Miyamoto T, Kitano A, Flanders KC, Ohnishi Y, Nakajima Y, Kao WW, Ikeda K (2007) Effect of overexpression of PPARgamma on the healing process of corneal alkali burn in mice. Am J Physiol Cell Physiol 293:C75–C86

    Article  CAS  PubMed  Google Scholar 

  40. O’Donnell C, Efron N (2006) Corneal hydration control in contact lens wearers with diabetes mellitus. Optom Vis Sci 83:22–26

    Article  PubMed  Google Scholar 

  41. Schive K, Kavli G, Volden G (1984) Light penetration of normal and photokeratitis induced rabbit cornea. Acta Ophthalmol (Copenh) 62:309–314

    Article  CAS  Google Scholar 

  42. Beems E, Best JV (1990) Light transmission of the cornea in whole human eyes. Exp Eye Res 50:393–395

    Article  CAS  PubMed  Google Scholar 

  43. Algvere PV, Torstensson PA, Tengroth BM (1993) Light transmission of ocular media in living rabbit eyes. Invest Ophthalmol Vis Sci 34:349–354

    CAS  PubMed  Google Scholar 

  44. McLaren JW, Brubaker RF (1996) Measurement of transmission of ultraviolet and visible light in the living rabbit cornea. Curr Eye Res 15:411–421

    Article  CAS  PubMed  Google Scholar 

  45. Best JAV (1988) Corneal transmission in whole human eyes. Exp Eye Res 46:765–768

    Article  PubMed  Google Scholar 

  46. Moller-Pedersen TH, Cavanagh THD, Petroll WM, Jester JV (1998) Corneal haze development after PRK is regulated by volume of stromal tissue removal. Cornea 17:627–639

    Article  CAS  PubMed  Google Scholar 

  47. Hrynchak P, Simpson T (2000) Optical coherence tomography: an introduction to the technique and its use. Optom Vis Sci 77:347–356

    Article  CAS  PubMed  Google Scholar 

  48. Ventura L, Jesus GT, Oliveira GC, Sousa SJ (2005) Portable light transmission measuring system for preserved corneas. Biomed Eng Online 22:70

    Article  Google Scholar 

  49. Jalbert IF, Stapleton E, Sweeney DF, Coroneo M (2003) In vivo confocal microscopy of the human cornea. Br J Ophthalmol 87:225–236

    Article  CAS  PubMed  Google Scholar 

  50. Jester JV, Lee YG, Huang J, Houston J, Adams B, Cavanagh HD, Petroll WM (2007) Postnatal corneal transparency, keratocyte cell cycle exit and expression of ALDH1A1. Invest Ophthalmol Vis Sci 48:4061–4069

    Article  PubMed  Google Scholar 

  51. Doutch J, Quantock AJ, Smith VA, Meek KM (2008) Light transmission in the human cornea as a function of position across the ocular surface: theoretical and experimental aspects. Biophys J 95:5092–5099

    Article  CAS  PubMed  Google Scholar 

  52. Meek KM, Fullwood NJ, Cooke PH, Elliot GF, Maurice DM, Quantock AJ, Wall RS, Worthington CR (1991) Synchrotron x-ray diffraction studies of the cornea, with implications for stromal hydration. Biophys J 60:467–474

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to declare.

Financial support

Supported by a grant from the Academy of Sciences of the Czech Republic AVOZ50390512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Čejková.

Additional information

Supported by a grant from the Academy of Sciences of the Czech Republic AVOZ50390512.

The authors have full control of all primary data and agree to allow Graefes Arch Clin Exp Ophthal to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čejka, Č., Ardan, T., Širc, J. et al. The influence of various toxic effects on the cornea and changes in corneal light transmission. Graefes Arch Clin Exp Ophthalmol 248, 1749–1756 (2010). https://doi.org/10.1007/s00417-010-1438-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1438-2

Keywords

Navigation