Skip to main content
Log in

Accumulation of FlAsH/Lumio Green in active mitochondria can be reversed by β-mercaptoethanol for specific staining of tetracysteine-tagged proteins

  • Short communications
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Recent advances in the field of small molecule labels for live cell imaging promise to overcome some of the limitations set by the size of fluorescent proteins. We tested the tetracysteine–biarsenical labeling system in live cell fluorescence microscopy of reggie-1/flotillin-2 in HeLa and N2a cells. In both cell types, the biarsenical staining reagent FlAsH/Lumio Green accumulated in active mitochondria and led to mitochondrial swelling. This is indicative of toxic side effects caused by arsenic, which should be considered when this labeling system is to be used in live cell imaging. Mitochondrial accumulation of FlAsH/Lumio Green was reversed by addition of low concentrations of thiol-containing reagents during labeling and a subsequent high stringency thiol wash. Both ethanedithiol and β-mercaptoethanol proved to be effective. We therefore established a staining protocol using β-mercaptoethanol as thiol binding site competitor resulting in a specific staining of tetracysteine-tagged reggie-1/flotillin-2 of adequate signal to noise ratio, so that the more toxic and inconvenient ethanedithiol could be avoided. Furthermore, we show that staining efficiency was greatly enhanced by introducing a second tetracysteine sequence in tandem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with image. J Biophotonics Int 11:36–42

    Google Scholar 

  • Andresen M, Schmitz-Salue R, Jakobs S (2004) Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging. Mol Biol Cell 15:5616–5622

    Article  PubMed  CAS  Google Scholar 

  • Chen I, Ting AY (2005) Site-specific labeling of proteins with small molecules in live cells. Curr Opin Biotechnol 16:35–40

    Article  PubMed  CAS  Google Scholar 

  • Dalton WS (2002) Targeting the mitochondria: an exciting new approach to myeloma therapy. Commentary re: Bahlis NJ et al. (2002) Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clin Cancer Res 8:3658–3668. Clin Cancer Res 8:3643–3645

    Google Scholar 

  • Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  PubMed  CAS  Google Scholar 

  • Griffin BA, Adams SR, Jones J, Tsien RY (2000) Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods Enzymol 327:565–578

    Article  PubMed  CAS  Google Scholar 

  • Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    Article  PubMed  CAS  Google Scholar 

  • Lang DM, Lommel S, Jung M, Ankerhold R, Petrausch B, Laessing U, Wiechers MF, Plattner H, Stuermer CA (1998) Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol 37: 502–523

    Article  PubMed  CAS  Google Scholar 

  • Langhorst MF, Reuter A, Stuermer CA (2005) Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240

    Article  PubMed  CAS  Google Scholar 

  • Lindahl PE, Oberg KE (1960) Mechanism of the physiological action of rotenone. Nature 187:784

    Article  PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456

    Article  PubMed  CAS  Google Scholar 

  • Marek KW, Davis GW (2002) Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36:805–813

    Article  PubMed  CAS  Google Scholar 

  • Martin BR, Giepmans BN, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23(10):1308–1314

    Article  PubMed  CAS  Google Scholar 

  • Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Luers G, Stuermer CA, Herzog V, Tikkanen R (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 378:509–518

    Article  PubMed  CAS  Google Scholar 

  • Schulte T, Paschke KA, Laessing U, Lottspeich F, Stuermer CA (1997) Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development 124:577–87

    PubMed  CAS  Google Scholar 

  • Song L, Hennink EJ, Young IT, Tanke HJ (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68:2588–600

    PubMed  CAS  Google Scholar 

  • Stroffekova K, Proenza C, Beam KG (2001) The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins. Pflugers Arch 442:859–66

    Article  PubMed  CAS  Google Scholar 

  • Tour O, Meijer RM, Zacharias DA, Adams SR, Tsien RY (2003) Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol 21:1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc 127:4888–4894

    Article  PubMed  CAS  Google Scholar 

  • Zmuda J, Friedenson B (1983) Changes in intracellular glutathione levels in stimulated and unstimulated lymphocytes in the presence of 2-mercaptoethanol or cysteine. J Immunol 130:362–364

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gonzalo Solis and Alexander Reuter for their help with cloning of the R1-Cys4-expression vectors. This work was supported by grants from the Deutsche Forschungsgemeinschaft DFG (SFB-TR11), the Ministerium Forschung, Wissenschaft und Kunst Baden-Württemberg (TSE program) and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias F. Langhorst.

Additional information

M.F. Langhorst and S. Genisyuerek contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langhorst, M.F., Genisyuerek, S. & Stuermer, C.A. Accumulation of FlAsH/Lumio Green in active mitochondria can be reversed by β-mercaptoethanol for specific staining of tetracysteine-tagged proteins. Histochem Cell Biol 125, 743–747 (2006). https://doi.org/10.1007/s00418-005-0136-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0136-3

Keywords

Navigation