Skip to main content
Log in

Galectins: their network and roles in immunity/tumor growth control

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

One route of realizing the information of glycans involves endogenous receptors (lectins). Occurrence at branch ends renders galactosides particularly accessible. Thus, they are suited for such a recognition process. Fittingly, these epitopes serve as physiological ligands. The ga(lactoside-binding) lectins share the β-sandwich fold with a sequence signature around a central tryptophan residue besides this specificity. Three modes of presentation of the carbohydrate recognition domain are known for galectins, and genome monitoring from fungi to mammals discloses that galectins form a network. The extent of its complexity varies considerably between organisms, for chicken reaching seven proteins, more for mammals. The current status of network analysis reveals overlapping and distinct expression profiles. Matching intra- and extracellular galectin presence, they have a broad range of functions at each site depending on their specific counterreceptor(s), with the possibility even for functional antagonism between family members. Orchestration of expression of galectin, the cognate glycan, its scaffold (protein or sphingolipid) and spatial aspects of glycoconjugate presentation has been detected to lead to growth regulation of immune and tumor cells. To delineate the factors that underlie the specificity of a galectin for its counterreceptor(s) in the cellular context and the details of structure–activity relationships by comparatively analyzing natural and rationally engineered proteins is the main challenge for ongoing research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal BBL, Goldstein IJ (1965) Specific binding of concanavalin A to cross-linked dextran gel. Biochem J 96:23c–25c

    Article  Google Scholar 

  • Allen HJ, Sucato D, Gottstine S, Kisailus E, Nava H, Petrelli N, Castillo N, Wilson D (1991) Localization of endogenous β-galactoside-binding lectin in human cells and tissues. Tumour Biol 12:52–60

    Article  CAS  PubMed  Google Scholar 

  • Amano M, Eriksson H, Manning JC, Detjen KM, André S, Nishimura S-I, Lehtiö J, Gabius H-J (2012) Tumour suppressor p16INK4a: anoikis-favouring decrease in N/O-glycan/cell surface sialylation by down-regulation of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model. FEBS J 279:4062–4080

    Article  CAS  PubMed  Google Scholar 

  • André S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, Gabius H-J (1999) Galectins-1 and -3 and their ligands in tumor biology. J Cancer Res Clin Oncol 125:461–474

    Article  PubMed  Google Scholar 

  • André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Kopitz J, Forberich P, Kemmner W, Böck C, Deguchi K, Detjen KM, Wiedenmann B, von Knebel-Döberitz M, Gress TM, Nishimura S-I, Rosewicz S, Gabius H-J (2007) Tumor suppressor p16INK4a: modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J 274:3233–3256

    Article  PubMed  Google Scholar 

  • Barondes SH (1997) Galectins: a personal review. Trends Glycosci Glycotechnol 9:1–7

    Article  CAS  Google Scholar 

  • Beyer EC, Zweig SE, Barondes SH (1980) Two lactose-binding lectins from chicken tissues. Purified lectin from intestine is different from those in liver and muscle. J Biol Chem 255:4236–4239

    CAS  PubMed  Google Scholar 

  • Bhide GP, Colley KJ (2017) Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1520-x

  • Buddecke E (2009) Proteoglycans. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 199–216

    Google Scholar 

  • Cabrera PV, Amano M, Mitoma J, Chan J, Said J, Fukuda M, Baum LG (2006) Haploinsufficiency of C2GnT-I glycosyltransferase renders T lymphoma cells resistant to cell death. Blood 108:2399–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DNW (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572:209–231

    Article  CAS  PubMed  Google Scholar 

  • Corfield AP (2017) Protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1526-4

  • Dawson H, André S, Karamitopoulou E, Zlobec I, Gabius H-J (2013) The growing galectin network in colon cancer and clinical relevance of cytoplasmic galectin-3 reactivity. Anticancer Res 33:3053–3059

    CAS  PubMed  Google Scholar 

  • De Waard A, Hickman S, Kornfeld S (1976) Isolation and properties of β-galactoside binding lectins of calf heart and lung. J Biol Chem 251:7581–7587

    PubMed  Google Scholar 

  • Den H, Malinzak DA (1977) Isolation and properties of β-d-galactoside-specific lectin from chick embryo thigh muscle. J Biol Chem 252:5444–5448

    CAS  PubMed  Google Scholar 

  • Dettmann W, Grandbois M, André S, Benoit M, Wehle AK, Kaltner H, Gabius H-J, Gaub HE (2000) Differences in zero-force and force-driven kinetics of ligand dissociation from β-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. Arch Biochem Biophys 383:157–170

    Article  CAS  PubMed  Google Scholar 

  • Dimitroff CJ (2015) Galectin-binding O-glycosylations as regulators of malignancy. Cancer Res 75:3195–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl LA, Bi S, Baum LG (2010) N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J Biol Chem 285:2232–2244

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, Sanchez-Ruderisch H, Welzel M, Wiedenmann B, Sakai T, André S, Gabius H-J, Khachigian L, Detjen K, Rosewicz S (2005) Galectin-1 interacts with the α5β1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J Biol Chem 280:37266–37277

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J (1997) Animal lectins. Eur J Biochem 243:543–576

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J (2009) Animal and human lectins. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 317–328

    Google Scholar 

  • Gabius H-J (2015) The magic of the sugar code. Trends Biochem Sci 40:341

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Roth J (2017) An introduction to the sugar code. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1521-9

  • Gabius H-J, Brehler R, Schauer A, Cramer F (1986) Localization of endogenous lectins in normal human breast, benign breast lesions and mammary carcinomas. Virch Arch 52:107–115

    Article  CAS  Google Scholar 

  • Gabius H-J, Wosgien B, Hendrys M, Bardosi A (1991) Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. Histochemistry 95:269–277

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Kaltner H, Kopitz J, André S (2015) The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. Trends Biochem Sci 40:360–376

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Manning JC, Kopitz J, André S, Kaltner H (2016) Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 73:1989–2016

    Article  CAS  PubMed  Google Scholar 

  • Galvan M, Tsuboi S, Fukuda M, Baum LG (2000) Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J Biol Chem 275:16730–16737

    Article  CAS  PubMed  Google Scholar 

  • García Caballero G, Flores-Ibarra A, Michalak M, Khasbiullina N, Bovin NV, André S, Manning JC, Vértesy S, Ruiz FM, Kaltner H, Kopitz J, Romero A, Gabius H-J (2016a) Galectin-related protein: an integral member of the network of chicken galectins. 1. From strong sequence conservation of the gene confined to vertebrates to biochemical characteristics of the chicken protein and its crystal structure. Biochim Biophys Acta 1860:2285–2297

    Article  PubMed  Google Scholar 

  • García Caballero G, Kaltner H, Michalak M, Shilova NV, Yegres M, André S, Ludwig A-K, Manning JC, Schmidt S, Schnölzer M, Bovin NV, Reusch D, Kopitz J, Gabius H-J (2016b) Chicken GRIFIN: a homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie 128–129:34–47

    Article  PubMed  Google Scholar 

  • Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109:2058–2065

    Article  CAS  PubMed  Google Scholar 

  • Hagisawa S, Ohyama C, Takahashi T, Endoh M, Moriya T, Nakayama J, Arai Y, Fukuda M (2005) Expression of core 2 β1,6-N-acetylglucosaminyltransferase facilitates prostate cancer progression. Glycobiology 15:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Harrison FL (1991) Soluble vertebrate lectins: ubiquitous but inscrutable proteins. J Cell Sci 100:9–14

    CAS  PubMed  Google Scholar 

  • Harrison FL, Chesterton CJ (1980) Factors mediating cell-cell recognition and adhesion. Galaptins, a recently discovered class of bridging molecules. FEBS Lett 122:157–165

    Article  CAS  PubMed  Google Scholar 

  • Haudek KC, Spronk KJ, Voss PG, Patterson RJ, Wang JL, Arnoys EJ (2010) Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim Biophys Acta 1800:181–189

    Article  CAS  PubMed  Google Scholar 

  • Hennet T (2002) The galactosyltransferase family. Cell Mol Life Sci 59:1081–1095

    Article  CAS  PubMed  Google Scholar 

  • Higuero AM, Díez-Revuelta N, Abad-Rodríguez J (2017) The sugar code in neuronal physiology. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1519-3

  • Ho MK, Springer TA (1982) Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol 128:1221–1228

    CAS  PubMed  Google Scholar 

  • Hudgin RL, Pricer WEJ, Ashwell G, Stockert RJ, Morell AG (1974) The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem 249:5536–5543

    CAS  PubMed  Google Scholar 

  • Hughes RC (1994) Mac-2: a versatile galactose-binding protein of mammalian tissues. Glycobiology 4:5–12

    Article  CAS  PubMed  Google Scholar 

  • Hughes RC (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta 1473:172–185

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2004) The emergence of integrins: a personal and historical perspective. Matrix Biol 23:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ippel H, Miller MC, Vértesy S, Zheng Y, Cañada FJ, Suylen D, Umemoto K, Romano C, Hackeng T, Tai G, Leffler H, Kopitz J, André S, Kübler D, Jiménez-Barbero J, Oscarson S, Gabius H-J, Mayo KH (2016) Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR. Glycobiol 26:888–903

    Article  CAS  Google Scholar 

  • Ismail MN, Stone EL, Panico M, Lee SH, Luu Y, Ramirez K, Ho SB, Fukuda M, Marth JD, Haslam SM, Dell A (2011) High-sensitivity O-glycomic analysis of mice deficient in core 2 β1,6-N-acetylglucosaminyltransferases. Glycobiology 21:82–98

    Article  CAS  PubMed  Google Scholar 

  • Johnson MS, Lu N, Denessiouk K, Heino J, Gullberg D (2009) Integrins during evolution: evolutionary trees and model organisms. Biochim Biophys Acta 1788:779–789

    Article  CAS  PubMed  Google Scholar 

  • Kaltner H, Gabius H-J (2012) A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol 27:397–416

    CAS  PubMed  Google Scholar 

  • Kaltner H, García Caballero G, Sinowatz F, Schmidt S, Manning JC, André S, Gabius H-J (2016) Galectin-related protein: an integral member of the network of chicken galectins. 2. From expression profiling to its immunocyto- and histochemical localization and application as tool for ligand detection. Biochim Biophys Acta 1860:2298–2312

    Article  CAS  PubMed  Google Scholar 

  • Kasai K-I (1997) Galectin: intelligent glue, non-bureaucratic bureaucrat or almighty supporting actor. Trends Glycosci Glycotechnol 9:167–170

    Article  CAS  Google Scholar 

  • Kasai K-I, Hirabayashi J (1996) Galectins: a family of animal lectins that decipher glycocodes. J Biochem 119:1–8

    Article  CAS  PubMed  Google Scholar 

  • Katzenmaier E-M, André S, Kopitz J, Gabius H-J (2014) Impact of sodium butyrate on the network of adhesion/growth-regulatory galectins in human colon cancer in vitro. Anticancer Res 34:5429–5438

    CAS  PubMed  Google Scholar 

  • Kopitz J (2009) Glycolipids. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 177–198

    Google Scholar 

  • Kopitz J (2017) Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1518-4

  • Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius H-J (1998) Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem 273:11205–11211

    Article  CAS  PubMed  Google Scholar 

  • Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius H-J (2001) Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 276:35917–35923

    Article  CAS  PubMed  Google Scholar 

  • Kopitz J, Bergmann M, Gabius H-J (2010) How adhesion/growth-regulatory galectins-1 and -3 attain cell specificity: case study defining their target on neuroblastoma cells (SK-N-MC) and marked affinity regulation by affecting microdomain organization of the membrane. IUBMB Life 62:624–628

    Article  CAS  PubMed  Google Scholar 

  • Lahm H, André S, Höflich A, Fischer JR, Sordat B, Kaltner H, Wolf E, Gabius H-J (2001) Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J Cancer Res Clin Oncol 127:375–386

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G, André S, Bleich D, Huet G, Kaltner H, Kopitz J, Gabius H-J (2012) Beyond glycoproteins as galectin counterreceptors: tumor/effector T cell growth control via ganglioside GM1. Ann N Y Acad Sci 1253:206–221

    Article  CAS  PubMed  Google Scholar 

  • Levi G, Teichberg VI (1981) Isolation and physicochemical characterization of electrolectin, a β-d-galactoside-binding lectin from the electric organ of Electrophorus electricus. J Biol Chem 256:5735–5740

    CAS  PubMed  Google Scholar 

  • Manning JC, Romero A, Habermann F, García Caballero G, Kaltner H, Gabius H-J (2017) Lectins: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1524-6

  • Mayer S, Raulf M-K, Lepenies B (2017) C-type lectins: their network and roles in immunity/pathogen recognition. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1523-7

  • Merkle RK, Cummings RD (1988) Asparagine-linked oligosaccharides containing poly-N-acetyllactosamine chains are preferentially bound by immobilized calf heart agglutinin. J Biol Chem 263:16143–16149

    CAS  PubMed  Google Scholar 

  • Minami A, Suzuki T (2012) Distribution of sialidase activity and the role of sialidase in the brain. Trends Glycosci Glycotechnol 24:112–121

    Article  CAS  Google Scholar 

  • Mkhikian H, Mortales CL, Zhou RW, Khachikyan K, Wu G, Haslam SM, Kavarian P, Dell A, Demetriou M (2016) Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis. Elife 5:e14814

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemoto-Sasaki Y, Hayama K, Ohya H, Arata Y, Kaneko MK, Saitou N, Hirabayashi J, Kasai K-I (2008) Caenorhabditis elegans galectins LEC-1-LEC-11: structural features and sugar-binding properties. Biochim Biophys Acta 1780:1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Nguyen JT, Evans DP, Galvan M, Pace KE, Leitenberg D, Bui TN, Baum LG (2001) CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J Immunol 167:5697–5707

    Article  CAS  PubMed  Google Scholar 

  • Pace KE, Baum LG (1997) Induction of T lymphocyte apoptosis: a novel function for galectin-1. Trends Glycosci Glycotechnol 9:21–29

    Article  CAS  Google Scholar 

  • Patsos G, Corfield AP (2009) O-Glycosylation: structural diversity and function. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 111–137

    Google Scholar 

  • Petrosyan A, Holzapfel MS, Muirhead DE, Cheng PW (2014) Restoration of compact Golgi morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis. Mol Cancer Res 12:1704–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plath T, Detjen K, Welzel M, von Marschall Z, Murphy D, Schirner M, Wiedenmann B, Rosewicz S (2000) A novel function for the tumor suppressor p16INK4a: induction of anoikis via upregulation of the α5β1 fibronectin receptor. J Cell Biol 150:1467–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plzák J, Betka J, Smetana K Jr, Chovanec M, Kaltner H, André S, Kodet R, Gabius H-J (2004) Galectin-3: an emerging prognostic indicator in advanced head and neck carcinoma. Eur J Cancer 40:2324–2330

    Article  PubMed  Google Scholar 

  • Quarles RH (2007) Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem 100:1431–1448

    CAS  PubMed  Google Scholar 

  • Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T (1995) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108:1617–1627

    CAS  PubMed  Google Scholar 

  • Rappl G, Abken H, Muche JM, Sterry W, Tilgen W, André S, Kaltner H, Ugurel S, Gabius H-J, Reinhold U (2002) CD4+CD7 leukemic T cells from patients with Sézary syndrome are protected from galectin-1-triggered T cell death. Leukemia 16:840–845

    Article  CAS  PubMed  Google Scholar 

  • Remmelink M, de Leval L, Decaestecker C, Duray A, Crompot E, Sirtaine N, André S, Kaltner H, Leroy X, Gabius H-J, Saussez S (2011) Quantitative immunohistochemical fingerprinting of adhesion/growth-regulatory galectins in salivary gland tumours: divergent profiles with diagnostic potential. Histopathology 58:543–556

    Article  PubMed  Google Scholar 

  • Reuter G, Gabius H-J (1999) Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol Life Sci 55:368–422

    Article  CAS  PubMed  Google Scholar 

  • Rogers JC, Kornfeld S (1971) Hepatic uptake of proteins coupled to fetuin glycopeptide. Biochem Biophys Res Commun 45:622–629

    Article  CAS  PubMed  Google Scholar 

  • Roth J (1996) Protein glycosylation in the endoplasmic reticulum and the Golgi apparatus and cell-type specificity of cell surface glycoconjugate expression: analysis by protein A-gold and lectin-gold techniques. Histochem Cell Biol 106:79–92

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Berger EG (1982) Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol 93:223–229

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Zuber C (2017) Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1513-9

  • Roy R, Murphy PV, Gabius H-J (2016) Multivalent carbohydrate–lectin interactions: how synthetic chemistry enables insights into nanometric recognition. Molecules 21:629

    Article  Google Scholar 

  • Roy R, Cao Y, Kaltner H, Kottari N, Shiao TC, Belkhadem K, André S, Manning JC, Murphy PV, Gabius H-J (2017) Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1525-5

  • Sanchez-Ruderisch H, Fischer C, Detjen KM, Welzel M, Wimmel A, Manning JC, André S, Gabius H-J (2010) Tumor suppressor p16INK4a: downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J 277:3552–3563

    Article  CAS  PubMed  Google Scholar 

  • Smetana K Jr, André S, Kaltner H, Kopitz J, Gabius H-J (2013) Context-dependent multifunctionality of galectin-1: a challenge for defining the lectin as therapeutic target. Expert Opin Ther Targets 17:379–392

    Article  CAS  PubMed  Google Scholar 

  • Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K Jr, Gabius H-J (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta 1850:186–235

    Article  PubMed  Google Scholar 

  • Sturm A, Lensch M, André S, Kaltner H, Wiedenmann B, Rosewicz S, Dignass AU, Gabius H-J (2004) Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J Immunol 173:3825–3837

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S (2006) Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 18:1197–1209

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Tsuji S (2011) Functional diversity of mammalian sialyltransferases. Trends Glycosci Glycotechnol 23:178–193

    Article  CAS  Google Scholar 

  • Teichberg VI, Silman I, Beitsch DD, Resheff G (1975) A β-d-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci USA 72:1383–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toegel S, Bieder D, André S, Kayser K, Walzer SM, Hobusch G, Windhager R, Gabius H-J (2014) Human osteoarthritic knee cartilage: fingerprinting of adhesion/growth-regulatory galectins in vitro and in situ indicates differential upregulation in severe degeneration. Histochem Cell Biol 142:373–388

    Article  CAS  PubMed  Google Scholar 

  • Toegel S, Weinmann D, André S, Walzer SM, Bilban M, Schmidt S, Chiari C, Windhager R, Krall C, Bennani-Baiti IM, Gabius H-J (2016) Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network. J Immunol 196:1910–1921

    Article  CAS  PubMed  Google Scholar 

  • Togayachi A, Narimatsu H (2012) Functional analysis of β1,3-N-acetylglucosaminyltransferases and regulation of immunological function by polylactosamine. Trends Glycosci Glycotechnol 24:95–111

    Article  CAS  Google Scholar 

  • Valenzuela HF, Pace KE, Cabrera PV, White R, Porvari K, Kaija H, Vihko P, Baum LG (2007) O-Glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res 67:6155–6162

    Article  CAS  PubMed  Google Scholar 

  • Velasco S, Díez-Revuelta N, Hernández-Iglesias T, Kaltner H, André S, Gabius H-J, Abad-Rodríguez J (2013) Neuronal galectin-4 is required for axon growth and for the organization of axonal membrane L1 delivery and clustering. J Neurochem 125:49–62

    Article  CAS  PubMed  Google Scholar 

  • Vértesy S, Michalak M, Miller MC, Schnölzer M, André S, Kopitz J, Mayo KH, Gabius H-J (2015) Structural significance of galectin design: impairment of homodimer stability by linker insertion and partial reversion by ligand presence. Protein Eng Des Sel 28:199–210

    Article  PubMed  Google Scholar 

  • Villalobo A, Nogales-Gonzáles A, Gabius H-J (2006) A guide to signaling pathways connecting protein–glycan interaction with the emerging versatile effector functionality of mammalian lectins. Trends Glycosci Glycotechnol 18:1–37

    Article  CAS  Google Scholar 

  • Vladoiu MC, Labrie M, St-Pierre Y (2014) Intracellular galectins in cancer cells: potential new targets for therapy. Int J Oncol 44:1001–1014

    CAS  PubMed  Google Scholar 

  • Vyas AA, Blixt O, Paulson JC, Schnaar RL (2005) Potent glycan inhibitors of myelin-associated glycoprotein enhance axon outgrowth in vitro. J Biol Chem 280:16305–16310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JL, Gray RM, Haudek KC, Patterson RJ (2004) Nucleocytoplasmic lectins. Biochim Biophys Acta 1673:75–93

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lu ZH, Gabius H-J, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182:4036–4045

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Lu ZH, Gabius H-J, Ledeen RW, Bleich D (2011) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T cell suppression. Diabetes 60:2341–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Lu ZH, André S, Gabius H-J, Ledeen RW (2016) Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca2+ influx. J Neurochem 136:550–563

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Moussodia R-O, Murzeau C, Sun HJ, Klein ML, Vértesy S, André S, Roy R, Gabius H-J, Percec V (2015) Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins. Angew Chem Int Ed 54:4036–4040

    Article  CAS  Google Scholar 

  • Zhou Q, Cummings RD (1993) L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch Biochem Biophys 300:6–17

    Article  CAS  PubMed  Google Scholar 

  • Zhuo Y, Bellis SL (2011) Emerging role of α2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 286:5935–5941

    Article  CAS  PubMed  Google Scholar 

  • Zuber C, Roth J (2009) N-Glycosylation. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 87–110

    Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. B. Friday, C. Knospe, A. Leddoz and F. Sinowatz for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Gabius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaltner, H., Toegel, S., Caballero, G.G. et al. Galectins: their network and roles in immunity/tumor growth control. Histochem Cell Biol 147, 239–256 (2017). https://doi.org/10.1007/s00418-016-1522-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1522-8

Keywords

Navigation