Skip to main content

Advertisement

Log in

Lectins: a primer for histochemists and cell biologists

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

An experimental observation on selecting binding partners underlies the introduction of the term ‘lectin’. Agglutination of erythrocytes depending on their blood-group status revealed the presence of activities in plant extracts that act in an epitope-specific manner like antibodies. As it turned out, their binding partners on the cell surface are carbohydrates of glycoconjugates. By definition, lectins are glycan-specific (mono- or oligosaccharides presented by glycoconjugates or polysaccharides) receptors, distinguished from antibodies, from enzymes using carbohydrates as substrates and from transporters of free saccharides. They are ubiquitous in Nature and structurally widely diversified. More than a dozen types of folding pattern have evolved for proteins that bind glycans. Used as tool, this capacity facilitates versatile mapping of glycan presence so that plant/fungal and also animal/human lectins have found a broad spectrum of biomedical applications. The functional pairing with physiological counterreceptors is involved in a wide range of cellular activities from cell adhesion, glycoconjugate trafficking to growth regulation and lets lectins act as sensors/effectors in host defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Such an apparent lack of enthusiasm in an early phase of study allows to draw an analogy to the course of development similarly encountered in the case of nuclein (first isolated in 1869, renamed to nucleic acid in 1889) (Chargaff 1970; Dahm 2005). Following nuclein’s biochemical characterization, “then the long road began—in this case nearly 80 years—which every biologically important, complicated chemical substance must travel: first its structure, then its function” (Chargaff 1977). Accompanied by encouraging statements such as that lectins “promise to have theoretical and practical importance” (Boyd and Shapleigh 1954), the topic of an “obscure” research field eventually made it into the “limelight” (Sharon 1998). Breaking the sugar code and “identifying the receptors,” then analyzing the functional pairing of lectin and its counterreceptor(s) “are of prime importance” (Sharon 1998), long-range aims that sparked vigorous research activity, for example by using ConA as research tool (Bittiger and Schnebli 1976).

References

  • Agrawal BBL, Goldstein IJ (1965) Specific binding of concanavalin A to cross-linked dextran gel. Biochem J 96:23c–25c

    Article  Google Scholar 

  • André S, Kaltner H, Kayser K, Murphy PV, Gabius H-J (2016) Merging carbohydrate chemistry with lectin histochemistry to study inhibition of lectin binding by glycoclusters in the natural tissue context. Histochem Cell Biol 145:185–199

    Article  PubMed  CAS  Google Scholar 

  • Antonopoulos A, North SJ, Haslam SM, Dell A (2011) Glycosylation of mouse and human immune cells: insights emerging from N-glycomics analyses. Biochem Soc Trans 39:1334–1340

    Article  CAS  PubMed  Google Scholar 

  • Aulthouse AL, Solursh M (1987) The detection of a precartilage, blastema-specific marker. Dev Biol 120:377–384

    Article  CAS  PubMed  Google Scholar 

  • Barbieri L, Battelli MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154:237–282

    Article  CAS  PubMed  Google Scholar 

  • Barondes SH (1988) Bifunctional properties of lectins: lectins redefined. Trends Biochem Sci 13:480–482

    Article  CAS  PubMed  Google Scholar 

  • Bennett HS (1963) Morphological aspects of extracellular polysaccharides. J Histochem Cytochem 11:14–23

    Article  Google Scholar 

  • Bhide GP, Colley KJ (2017) Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1520-x

  • Bird GWG (1989) Lectins in immunohematology. Transfus Med Rev 3:55–62

    Article  CAS  PubMed  Google Scholar 

  • Bittiger H, Schnebli HP (eds) (1976) Concanavalin A as a tool. Wiley, London

    Google Scholar 

  • Borrebaeck CAK, Carlsson R (1989) Lectins as mitogens. Adv Lectin Res 2:1–27

    Google Scholar 

  • Boyd WC (1954) The proteins of immune reactions. In: Neurath H, Bailey K (eds) The proteins, vol 2, part 2. Academic Press, New York, pp 756–844

    Google Scholar 

  • Boyd WC (1963) The lectins: their present status. Vox Sang 8:1–32

    Article  CAS  PubMed  Google Scholar 

  • Boyd WC, Shapleigh E (1954) Specific precipitating activity of plant agglutinins (lectins). Science 119:419

    Article  CAS  PubMed  Google Scholar 

  • Brinkman-Van der Linden EC, Sonnenburg JL, Varki A (2002) Effects of sialic acid substitutions on recognition by Sambucus nigra agglutinin and Maackia amurensis hemagglutinin. Anal Biochem 303:98–104

    Article  CAS  PubMed  Google Scholar 

  • Buddecke E (2009) Proteoglycans. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 199–216

    Google Scholar 

  • Chargaff E (1970) Vorwort zu einer Grammatik der Biologie. Hundert Jahre Nukleinsäureforschung. Experientia 26:810–816

    Article  CAS  PubMed  Google Scholar 

  • Chargaff E (1977) Voices in the labyrinth. Seabury Press, New York

    Google Scholar 

  • Clerc F, Reiding KR, Jansen BC, Kammeijer GS, Bondt A, Wuhrer M (2016) Human plasma protein N-glycosylation. Glycoconj J 33:309–343

    Article  CAS  PubMed  Google Scholar 

  • Corfield AP (2015) Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 1850:236–252

    Article  CAS  PubMed  Google Scholar 

  • Corfield AP (2017) Protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1526-4

  • Corfield AP, Berry M (2015) Glycan variation and evolution in the eukaryotes. Trends Biochem Sci 40:351–359

    Article  CAS  PubMed  Google Scholar 

  • Dahm R (2005) Friedrich Miescher and the discovery of DNA. Dev Biol 278:274–288

    Article  CAS  PubMed  Google Scholar 

  • Edelman GM, Cunningham BA, Reeke GN Jr, Becker JW, Waxdal MJ, Wang JL (1972) The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci USA 69:2580–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichwald E (1865) Beiträge zu Chemie der gewebbildenden Substanzen und ihrer Abkömmlinge. I. Ueber das Mucin, besonders der Weinbergschnecke. Ann Chem Pharm 134:177–211

    Article  Google Scholar 

  • Einhoff W, Fleischmann G, Freier T, Kummer H, Rüdiger H (1986) Interactions between lectins and other components of leguminous protein bodies. Biol Chem Hoppe Seyler 367:15–25

    Article  CAS  PubMed  Google Scholar 

  • Elfstrand M (1898) Ueber blutkörperchenagglutinierende Eiweisse. In: Kobert R (ed) Görbersdorfer Veröffentlichungen. F. Enke, Stuttgart, pp 1–159

    Google Scholar 

  • Endo Y (1989) Mechanism of action of ricin and related toxic lectins on the inactivation of eukaryotic ribosomes. Adv Lectin Res 2:60–73

    Article  Google Scholar 

  • Feinberg H, Rowntree TJ, Tan SL, Drickamer K, Weis WI, Taylor ME (2013) Common polymorphisms in human langerin change specificity for glycan ligands. J Biol Chem 288:36762–36771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabius H-J (1997) Animal lectins. Eur J Biochem 243:543–576

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J (2002) Animal lectins and life: a guided tour into the realm of the sugar code. Biochim Biophys Acta 1572:163–164

    Article  CAS  Google Scholar 

  • Gabius H-J (ed) (2009a) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim

    Google Scholar 

  • Gabius H-J (2009b) Animal and human lectins. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 317–328

    Google Scholar 

  • Gabius H-J (2015) The magic of the sugar code. Trends Biochem Sci 40:341

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Roth J (2017) An introduction to the sugar code. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1521-9

  • Gabius H-J, Springer WR, Barondes SH (1985) Receptor for the cell binding site of discoidin I. Cell 42:449–456

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Bodanowitz S, Schauer A (1988) Endogenous sugar-binding proteins in human breast tissue and benign and malignant breast lesions. Cancer 61:1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Gabius S, Zemlyanukhina TV, Bovin NV, Brinck U, Danguy A, Joshi SS, Kayser K, Schottelius J, Sinowatz F, Tietze LF, Vidal-Vanaclocha F, Zanetta J-P (1993) Reverse lectin histochemistry: design and application of glycoligands for detection of cell and tissue lectins. Histol Histopathol 8:369–383

    CAS  PubMed  Google Scholar 

  • Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Kaltner H, Kopitz J, André S (2015) The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. Trends Biochem Sci 40:360–376

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Manning JC, Kopitz J, André S, Kaltner H (2016) Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 73:1989–2016

    Article  CAS  PubMed  Google Scholar 

  • García Caballero G, Flores-Ibarra A, Michalak M, Khasbiullina N, Bovin NV, André S, Manning JC, Vértesy S, Ruiz FM, Kaltner H, Kopitz J, Romero A, Gabius H-J (2016a) Galectin-related protein: an integral member of the network of chicken galectins. 1. From strong sequence conservation of the gene confined to vertebrates to biochemical characteristics of the chicken protein and its crystal structure. Biochim Biophys Acta 1860:2285–2297

    Article  PubMed  CAS  Google Scholar 

  • García Caballero G, Kaltner H, Michalak M, Shilova NV, Yegres M, André S, Ludwig A-K, Manning JC, Schmidt S, Schnölzer M, Bovin NV, Reusch D, Kopitz J, Gabius H-J (2016b) Chicken GRIFIN: a homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie 128–129:34–47

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HJ, Knox JP, Boraston AB (2013) Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol 23:669–677

    Article  CAS  PubMed  Google Scholar 

  • Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins. Properties, functions, and applications in biology and medicine. Academic Press, Orlando, pp 33–247

    Google Scholar 

  • Gready JN, Zelensky AN (2009) Routes in lectin evolution: case study on the C-type lectin-like domains. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 329–346

    Google Scholar 

  • Habermann FA, André S, Kaltner H, Kübler D, Sinowatz F, Gabius H-J (2011) Galectins as tools for glycan mapping in histology: comparison of their binding profiles to the bovine zona pellucida by confocal laser scanning microscopy. Histochem Cell Biol 135:539–552

    Article  CAS  PubMed  Google Scholar 

  • Hardman KD, Ainsworth CF (1972) Structure of concanavalin A at 2.4-Å resolution. Biochemistry 11:4910–4919

    Article  CAS  PubMed  Google Scholar 

  • Hartley MR, Lord JM (2004) Cytotoxic ribosome-inactivating lectins from plants. Biochim Biophys Acta 1701:1–14

    Article  CAS  PubMed  Google Scholar 

  • Higuero AM, Díez-Revuelta N, Abad-Rodríguez J (2017) The sugar code in neuronal physiology. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1519-3

  • Hughes-Jones NC, Gardner B (2002) Red cell agglutination: the first description by Creite (1869) and further observations made by Landois (1875) and Landsteiner (1901). Br J Haematol 119:889–893

    Article  CAS  PubMed  Google Scholar 

  • Inamdar SR, Eligar SM, Ballal S, Belur S, Kalraiya RD, Swamy BM (2016) Exquisite specificity of mitogenic lectin from Cephalosporium curvulum to core fucosylated N-glycans. Glycoconj J 33:19–28

    Article  CAS  PubMed  Google Scholar 

  • Ju T, Otto VI, Cummings RD (2011) The Tn antigen: structural simplicity and biological complexity. Angew Chem Int Ed 50:1770–1791

    Article  CAS  Google Scholar 

  • Kaltner H, Gabius H-J (2012) A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol 27:397–416

    CAS  PubMed  Google Scholar 

  • Kaltner H, Toegel S, García Caballero G, Manning JC, Ledeen RW, Gabius H-J (2017) Galectins: their network and roles in immunity/tumor growth control. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1522-8

  • Kayser K, Bovin NV, Korchagina EY, Zeilinger C, Zeng F-Y, Gabius H-J (1994) Correlation of expression of binding sites for synthetic blood group A-, B-, and H-trisaccharides and for sarcolectin with survival of patients with bronchial carcinoma. Eur J Cancer 30A:653–657

    Article  CAS  PubMed  Google Scholar 

  • Kelm S, Schauer R, Manuguerra JC, Gross HJ, Crocker PR (1994) Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconj J 11:576–585

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick DC (2000) Handbook of animal lectins. Properties and biomedical applications. Wiley, Chichester

    Google Scholar 

  • Kilpatrick DC, Green C (1992) Lectins as blood typing reagents. Adv Lectin Res 5:51–94

    CAS  Google Scholar 

  • Knospe C (1984) Ein Beitrag zur Frage der Herkunft der Cardiadrüsen der Katze. Z mikrosk-anat Forsch 98:764–774

    CAS  PubMed  Google Scholar 

  • Kopitz J (2017) Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1518-4

  • Krüpe M (1956) Blutgruppenspezifische pflanzliche Eiweißkörper, Phytagglutinine. F. Enke, Stuttgart

    Google Scholar 

  • Lis H, Sharon N (1981) Affinity chromatography for the purification of lectins (a review). J Chromatogr 215:361–372

    Article  CAS  Google Scholar 

  • Lohr M, Kaltner H, Schwartz-Albiez R, Sinowatz F, Gabius H-J (2010) Towards functional glycomics by lectin histochemistry: strategic probe selection to monitor core and branch-end substitutions and detection of cell-type and regional selectivity in adult mouse testis and epididymis. Anat Histol Embryol 39:481–493

    Article  CAS  PubMed  Google Scholar 

  • Loris R (2002) Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572:198–208

    Article  CAS  PubMed  Google Scholar 

  • Lucocq JM, Roth J (1984) Applications of immunocolloids in light microscopy. III. Demonstration of antigenic and lectin-binding sites in semithin resin sections. J Histochem Cytochem 32:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Mayer S, Raulf M-K, Lepenies B (2017) C-type lectins: their network and roles in immunity/pathogen recognition. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1523-7

  • Mitchell SW (1860) Researches upon the venom of the rattlesnake. Smithson Contrib Knowl XII:89–90

    Google Scholar 

  • Mitchell SW, Reichert ET (1886) Researches upon the venoms of poisonous serpents. Smithson Contrib Knowl XXVI:155

    Google Scholar 

  • Moise A, André S, Eggers F, Krzeminski M, Przybylski M, Gabius H-J (2011) Toward bioinspired galectin mimetics: identification of ligand-contacting peptides by proteolytic-excision mass spectrometry. J Am Chem Soc 133:14844–14847

    Article  CAS  PubMed  Google Scholar 

  • Nagae M, Yamaguchi Y (2015) Sugar recognition and protein-protein interaction of mammalian lectins conferring diverse functions. Curr Opin Struct Biol 34:108–115

    Article  CAS  PubMed  Google Scholar 

  • Nowell PC (1960) Phytohemagglutinin: an inhibitor of mitosis in cultures of normal human leukocytes. Cancer Res 20:462–466

    CAS  PubMed  Google Scholar 

  • Patsos G, Corfield AP (2009) O-Glycosylation: structural diversity and function. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 111–137

    Google Scholar 

  • Percec V, Leowanawat P, Sun HJ, Kulikov O, Nusbaum CD, Tran TM, Bertin A, Wilson DA, Peterca M, Zhang S, Kamat NP, Vargo K, Moock D, Johnston ED, Hammer DA, Pochan DJ, Chen Y, Chabre YM, Shiao TC, Bergeron-Brlek M, André S, Roy R, Gabius H-J, Heiney PA (2013) Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J Am Chem Soc 135:9055–9077

    Article  CAS  PubMed  Google Scholar 

  • Pita R (2009) Toxin weapons: from World War I to jihadi terrorism. Toxin Rev 28:219–237

    Article  CAS  Google Scholar 

  • Quiocho FA (1986) Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. Annu Rev Biochem 55:287–315

    Article  CAS  PubMed  Google Scholar 

  • Reuter G, Gabius H-J (1996) Sialic acids: structure-analysis-metabolism-occurrence-recognition. Biol Chem Hoppe Seyler 377:325–342

    Article  CAS  PubMed  Google Scholar 

  • Reuter G, Gabius H-J (1999) Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol Life Sci 55:368–422

    Article  CAS  PubMed  Google Scholar 

  • Roth J (1983a) Application of lectin-gold complexes for electron microscopic localization of glycoconjugates on thin sections. J Histochem Cytochem 31:987–999

    Article  CAS  PubMed  Google Scholar 

  • Roth J (1983b) The colloidal gold marker system for light and electron microscopic cytochemistry. In: Bullock GR, Petrusz P (eds) Techniques in immunocytochemistry. Academic Press, London, pp 217–284

    Google Scholar 

  • Roth J (1996) Protein glycosylation in the endoplasmic reticulum and the Golgi apparatus and cell-type specificity of cell surface glycoconjugate expression: analysis by protein A-gold and lectin-gold techniques. Histochem Cell Biol 106:79–92

    Article  CAS  PubMed  Google Scholar 

  • Roth J (2011) Lectins for histochemical demonstration of glycans. Histochem Cell Biol 136:117–130

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Zuber C (2017) Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1513-9

  • Roth J, Lucocq JM, Charest PM (1984) Light and electron microscopic demonstration of sialic acid residues with the lectin from Limax flavus: a cytochemical affinity technique with the use of fetuin-gold complexes. J Histochem Cytochem 32:1167–1176

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Wang Y, Eckhardt AE, Hill RL (1994) Subcellular localization of the UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland. Proc Natl Acad Sci USA 91:8935–8939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy R, Murphy PV, Gabius H-J (2016) Multivalent carbohydrate-lectin interactions: how synthetic chemistry enables insights into nanometric recognition. Molecules 21:629

    Article  CAS  Google Scholar 

  • Roy R, Cao Y, Kaltner H, Kottari N, Shiao TC, Belkhadem K, André S, Manning JC, Murphy PV, Gabius H-J (2017) Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1525-5

  • Rüdiger H, Gabius H-J (2009a) The history of lectinology. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 261–268

    Google Scholar 

  • Rüdiger H, Gabius H-J (2009b) Plant lectins. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 301–315

    Google Scholar 

  • Ruiz FM, Scholz BA, Buzamet E, Kopitz J, André S, Menendez M, Romero A, Solís D, Gabius H-J (2014) Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells. FEBS J 281:1446–1464

    Article  CAS  PubMed  Google Scholar 

  • Schecher G, Rüdiger H (1994) Interaction of the soybean (Glycine max) seed lectin with components of the soybean protein body membrane. Biol Chem Hoppe Seyler 375:829–832

    CAS  PubMed  Google Scholar 

  • Schlossman SF, Kabat EA (1962) Specific fractionation of a population of antidextran molecules with combining sites of various sizes. J Exp Med 116:535–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon N (1998) Lectins: from obscurity into the limelight. Protein Sci 7:2042–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjoberg ER, Powell LD, Varki A (1994) Natural ligands of the B cell adhesion molecule CD22b can be masked by 9-O-acetylation of sialic acids. J Cell Biol 126:549–562

    Article  CAS  PubMed  Google Scholar 

  • Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K Jr, Gabius H-J (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta 1850:186–235

    Article  PubMed  CAS  Google Scholar 

  • Stillmark H (1888) Ueber Ricin, ein giftiges Ferment aus den Samen von Ricinus comm. L. und einigen anderen Euphorbiaceen. Schnakenburg’s Buchdruckerei, Dorpat

    Google Scholar 

  • Straus W (1981) Cytochemical detection of mannose-specific receptors for glycoproteins with horseradish peroxidase as a ligand. Histochemistry 73:39–47

    Article  CAS  PubMed  Google Scholar 

  • Sumner JB, Howell SF (1935) The non-identity of jack bean agglutinin with crystalline urease. J Immunol 29:133–134

    CAS  Google Scholar 

  • Sumner JB, Howell SF (1936) Identification of hemagglutinin of jack bean with concanavalin A. J Bacteriol 32:227–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson MD, Boudreaux DM, Salmon L, Chugh J, Winter HC, Meagher JL, André S, Murphy PV, Oscarson S, Roy R, King S, Kaplan MH, Goldstein IJ, Tarbet EB, Hurst BL, Smee DF, de la Fuente C, Hoffmann HH, Xue Y, Rice CM, Schols D, García JV, Stuckey JA, Gabius H-J, Al-Hashimi HM, Markovitz DM (2015) Engineering a therapeutic lectin by uncoupling mitogenicity from antiviral activity. Cell 163:746–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taatjes DJ, Schaub U, Roth J (1987) Light microscopical detection of antigens and lectin binding sites with gold-labelled reagents on semi-thin Lowicryl K4M sections: usefulness of the photochemical silver reaction for signal amplification. Histochem J 19:235–245

    Article  CAS  PubMed  Google Scholar 

  • Taatjes DJ, Roth J, Peumans W, Goldstein IJ (1988) Elderberry bark lectin: gold techniques for the detection of Neu5Acα2,6Gal/GalNAc sequences: applications and limitations. Histochem J 20:478–490

    Article  CAS  PubMed  Google Scholar 

  • Taylor ME, Drickamer K (2014) Convergent and divergent mechanisms of sugar recognition across kingdoms. Curr Opin Struct Biol 28:14–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toma V, Zuber C, Winter HC, Goldstein IJ, Roth J (2001) Application of a lectin from the mushroom Polysporus squamosus for the histochemical detection of the NeuAcα2,6Galβ1,4Glc/GlcNAc sequence of N-linked oligosaccharides: a comparison with the Sambucus nigra lectin. Histochem Cell Biol 116:183–193

    CAS  PubMed  Google Scholar 

  • Wilson IBH, Paschinger H, Rendic D (2009) Glycosylation of model and ‘lower’ organisms. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 139–154

    Google Scholar 

  • Worbs S, Kohler K, Pauly D, Avondet MA, Schaer M, Dorner MB, Dorner BG (2011) Ricinus communis intoxications in human and veterinary medicine: a summary of real cases. Toxins 3:1332–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Moussodia R-O, Vértesy S, André S, Klein ML, Gabius H-J, Percec V (2015a) Unraveling functional significance of natural variations of a human galectin by glycodendrimersomes with programmable glycan surface. Proc Natl Acad Sci USA 112:5585–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Moussodia R-O, Murzeau C, Sun HJ, Klein ML, Vértesy S, André S, Roy R, Gabius H-J, Percec V (2015b) Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins. Angew Chem Int Ed 54:4036–4040

    Article  CAS  Google Scholar 

  • Zimmermann B, Thies M (1984) Alterations of lectin binding during chondrogenesis of mouse limb buds. Histochemistry 81:353–361

    Article  CAS  PubMed  Google Scholar 

  • Zuber C, Roth J (2009) N-Glycosylation. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 87–110

    Google Scholar 

  • Zuber C, Paulson JC, Toma V, Winter HC, Goldstein IJ, Roth J (2003) Spatiotemporal expression patterns of sialoglycoconjugates during nephron morphogenesis and their regional and cell type-specific distribution in adult rat kidney. Histochem Cell Biol 120:143–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge inspiring discussions with Drs. B. Friday, C. Knospe, A. Leddoz and F. Sinowatz as well as generous funding by the excellence program of the Ludwig-Maximilians-University Munich, the Verein zur Förderung des biologisch-technologischen Fortschritts in der Medizin e.V. (Heidelberg, Germany) and the EC (for ITN network funding; GLYCOPHARM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Gabius.

Additional information

Joachim C. Manning, Antonio Romero and Felix A. Habermann have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 14370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manning, J.C., Romero, A., Habermann, F.A. et al. Lectins: a primer for histochemists and cell biologists. Histochem Cell Biol 147, 199–222 (2017). https://doi.org/10.1007/s00418-016-1524-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1524-6

Keywords

Navigation