Skip to main content

Advertisement

Log in

Regulation of mesenchymal signaling in palatal mucosa differentiation

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Epithelial differentiation is thought to be determined by mesenchymal components during embryogenesis. In mice, palatal mucosa showed the region-specific keratinization pattern along antero-posterior axis. However, developmental mechanisms involved in oral mucosa differentiation with fine tuning of keratinization are not elucidated yet. To reveal this developmental mechanism, first, we conducted tissue recombination assay of the palate at E16 for 2 days which revealed that epithelial differentiation with specific localization of CK10 is modulated by mesenchymal components. Based on the results, we propose that mesenchymal signaling would determine the presumptive fate of developing palatal epithelium in spatiotemporal manner. Genome-wide screening analysis using laser micro-dissection to collect spatiotemporal specific molecules between anterior and posterior palate suggested Meox2 in the posterior mesenchymal tissue to be a candidate regulator controlling epithelial differentiation. To examine the detailed spatiotemporal function of Meox2, we employed in vitro organ cultivation with the loss- and gain-of-function studies at E14.5 for 2 and 4 days, respectively. Our results suggest that posteriorly expressed Meox2 modulates non-keratinized epithelial differentiation through complex signaling regulations in mice palatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari N, Neupane S, Gwon GJ, Kim JY, An CH, Lee S, Sohn WJ, Lee Y, Kim JY (2017) Grhl3 modulates epithelial structure formation of the circumvallate papilla during mouse development. Histochem Cell Biol 147:5–16

    Article  CAS  PubMed  Google Scholar 

  • Arora R, del Alcazar CM, Morrisey EE, Naiche LA, Papaionnou VE (2012) Candidate gene approach identifies multiple genes and signaling pathways downstream of Tbx4 in the developing allantois. PLoS One 7(8):e43581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs LC, Mikkola ML (2014) Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 25–26:11–21

    Article  PubMed  Google Scholar 

  • Bongers EM, Duijf PH, van Beersum SE, Schoots J, Van Kampen A, Burckhardt A, Hamel BC, Losan F, Hoefsloot LH, Yntema HG, Knoers NV, van Bokhoven H (2004) Mutations in the human TBX4 gene cause small patella syndrome. Am J Hum Genet 74(6):1239–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush JO, Jiang R (2012) Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 139:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candia AF, Hu J, Crosby J, Lalley PA, Noden D, Nadeau JH, Wright CV (1992) Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116:1123–1136

    CAS  PubMed  Google Scholar 

  • Deprez PM, Nichane MG, Lengele BG, Rezsohazy R, Nyssen-Behets C (2013) Molecular study of Hoxa2 gain of function in chondeogenesis: a model of idiopathic proportionate short stature. Int J Mol Sci 14(10):20386–20398

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson WJ (1984) Epithelial–mesenchymal interactions during vertebrate palatogenesis. Curr Top Dev Biol 19:137–164

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E (2016) Epithelial skin biology: three decades of developmental biology, a hundred questions answered and a thousand new ones to address. Curr Top Dev Biol 116:357–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorski DH, Leal AJ (2003) Inhibition of endothelial cell activation by the homeobox gene Gax. Oncology 111(1):91–99

    CAS  Google Scholar 

  • Gritli-Linde A (2007) Molecular control of secondary palate development. Dev Biol 301:309–326

    Article  CAS  PubMed  Google Scholar 

  • Han J, Mayo J, Xu X, Li J, Bringas P Jr, Maas RL, Rubenstein JL, Chai Y (2009) Indirect modulation of Shh signaling by Dlx5 affects the oral-nasal patterning of palate and rescues cleft palate in Msx1-null mice. Development 136:4225–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann C, Drossopoulou G, McMahon A, Balling R, Tickle C (1998) Inhibitory action of Bmps on Pax1 expression and on shoulder girdle formation during limb development. Dev Dyn 213(2):199–206

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Yeo JY, Chytil A, Han J, Bringas P Jr, Nakajima A, Shuler CF, Moses HL, Chai Y (2003) Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 130:5269–5280

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Rojo L, Granchi Z, Graf D, Mitsiadis TA (2012) Stem cell fate determination during development and regeneration of ectodermal organs. Front Physiol 3:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin JZ, Ding J (2006) Analysis of Meox-2 mutant mice reveals a novel postfusion-based cleft palate. Dev Dyn 235(2):539–546

    Article  CAS  PubMed  Google Scholar 

  • Lan Y, Xu J, Jiang R (2015) Cellular and molecular mechanisms of palatogenesis. Curr Top Dev Biol 115:59–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Lan Y, Pauws E, Meester-Smoor MA, Stanier P, Zwarthoff EC, Jiang R (2008) The Mn1 transcription factor acts upstream of Tbx22 and preferentially regulates posterior palate growth in mice. Development 135(23):3959–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Kong F, Wang J, Lu Q, Xu H, Qi T, Meng J (2015) Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes. Exp Cell Res 331(1):82–96

    Article  CAS  PubMed  Google Scholar 

  • Mankoo BS, Skuntz S, Harrigan I, Grigorieva E, Candia A, Wright CV, Arnheiter H, Pachnis V (2003) The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development 30(19):4655–4664

    Article  Google Scholar 

  • Nanci A (2012) Ten cate’s oral histology. Elsevier, St Louis, United States

    Google Scholar 

  • Neupane S, Sohn WJ, Gwon GJ, Kim KR, Lee S, An CH, Suh JY, Shin HI, Yamamoto H, Cho SW, Lee Y, Kim JY (2015) The role of APCDD1 in epithelial rearrangement in tooth morphogenesis. Histochem Cell Biol 144(4):377–387

    Article  CAS  PubMed  Google Scholar 

  • Ohshima J, Haruta M, Arai Y, Kasai F, Fujiwara Y, Ariga T, Okita H, Fukuzawa M, Hata J, Horie H, Kaneko Y (2009) Two candidate tumour suppressor genes, MEOX2 and SOSTDC1, identified in a 7p21 homozygous deletion region in Wilms tumor. Genes Chromosomes Cancer 48(12):1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Pantalacci S, Prochazka J, Martin A, Rothova M, Lambert A, Bernard L, Charles C, Viriot L, Peterkova R, Laudet V (2008) Patterning of palatal rugae through sequential addition reveals an anterior/posterior boundary in palate development. BMC Dev Biol 8:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel S, Leal AD, Gorski DH (2005) The homeobox gene Gax inhibits angiogenesis through inhibition of nuclear factor-κB-dependent endothelial cell gene expression. Cancer Res 65(4):1414–1424

    Article  CAS  PubMed  Google Scholar 

  • Pearson HB, McGlinn E, Phesse TJ, Schluter H, Srikumar A, Godde NJ, Woelwer CB, Ryan A, Phillips A, Ernst M, Kaur P, Humbert P (2015) The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer 14:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Presland RB, Dale BA (2000) Epithelial structural proteins of the skin and oral cavity: function in health and disease. Crit Rev Oral Biol Med 11(4):383–408

    Article  CAS  PubMed  Google Scholar 

  • Quinn LM, Latham SE, Kalionis B (2000) The homeobox genes MSX2 and MOX2 are candidates for regulating epithelial–mesenchymal cell interactions in the human placenta. Placenta 21(Suppl. A):S50–S54

    Article  PubMed  Google Scholar 

  • Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6(4):348–356

    Article  CAS  PubMed  Google Scholar 

  • Shetty S, Gokul S (2012) Keratinization and its disorders. Oman Med J 27(5):348–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Shigetani Y, Nobusada Y, Kuratani S (2000) Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial–mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev Biol 228:73–85

    Article  CAS  PubMed  Google Scholar 

  • Smith TM, Lozanoff S, Iyyanar PP, Nazarali AJ (2012) Molecular signaling along the anterior-posterior axis of early palate development. Front Physiol 3:488

    Article  PubMed  Google Scholar 

  • Sohn WJ, Yamamoto H, Shin HI, Ryoo ZY, Lee S, Bae YC, Jung HS, Kim JY (2011) Importance of region-specific epithelial rearrangements in mouse rugae development. Cell Tissue Res 344:271–277

    Article  PubMed  Google Scholar 

  • Sohn WJ, Gwon KJ, Kim HS, Neupane S, Cho SJ, Lee JH, Yamamoto H, Choi JY, An CH, Lee Y, Shin HI, Lee S, Kim JY (2015) Mesenchymal signaling in dorsoventral differentiation of palatal epithelium. Cell Tissue Res 362(3):541–556

    Article  CAS  PubMed  Google Scholar 

  • Sperber GH (2002) Palatogenesis: closure of the secondary palate. In: Wyszynski (ed) Cleft lip and palate: from origin to treatment. Oxford University Press, Oxford, pp 14–24

    Google Scholar 

  • Stewart GA, Lowrey JA, Wakelin SJ, Fitch PA, Lindey S, Dallman MJ, Lamb JR, Howie SE (2002) Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells. J Immunol 169(10):5451–5457

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) String v10: protein–protein interactions networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452

    Article  CAS  PubMed  Google Scholar 

  • Welsh IC, O’Brien TP (2009) Signaling intergration in the rugae zone directs sequential SHH signaling center formation during rostral outgrowth of the palate. Dev Biol 336:53–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh IC, Hagge-Greenberg A, O’Brien TP (2007) A dosage-dependent role for Spry2 in growth and patterning during palate development. Mech Dev 124(9–10):746–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia S, Tai X, Wang Y, An X, Qian G, Dong J, Wang X, Sha B, Wang D, Murthi P, Kalionis B, Wang X, Bai C (2011) Involvement of Gax gene in hypoxia-induced pulmonary hypertension, proliferation, and apoptosis of arterial smooth muscle cells. Am J Respir Cell Mol Biol 44(1):66–73

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Gu S, Alappat S, Song Y, Yan M, Zhang X, Zhang G, Jiang Y, Zhang Z, Zhang Y, Chen Y (2005) Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate. Development 132:4397–4406

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Song Y, Zhao X, Zhang X, Fermin C, Chen Y (2002) Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development 129:4135–4146

    CAS  PubMed  Google Scholar 

  • Zhou J, Gao Y, Lan Y, Jia S, Jiang R (2013) Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Development 140(23):4709–4718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (Nos. 2017R1A5A2015391, 2010–0004243, 2012R1A1A2044113, 2014R1A1A3053711).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wern-Joo Sohn or Jae-Young Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2017_1620_MOESM1_ESM.tif

Figure S1. Scheme of LMD and putative interaction of signaling molecules. Schematic diagram of palate showing region of interest in the mesenchyme indicated by * and ** (a). Diagrammatic presentation of LMD (b). Numbers of genes regulated (c). Putative signaling interaction of up-regulated (>2 folds) genes (d). (TIF 2407 KB)

418_2017_1620_MOESM2_ESM.tif

Figure S2. Section in situ hybridization of Shox2 in the 2-day cultivated palate sections (a-f). The dotted lines indicate the basement membrane. Scale bars 50 µm. (TIF 2238 KB)

418_2017_1620_MOESM3_ESM.tif

Figure S3. Quantitative evaluation of CK10 in figure 5 (a) and the schematic diagram showing the region of histological sections presented in figure 5 (b). (TIF 5551 KB)

Supplementary material 4 (DOCX 19 KB)

Supplementary material 5 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, S., Adhikari, N., Jung, JK. et al. Regulation of mesenchymal signaling in palatal mucosa differentiation. Histochem Cell Biol 149, 143–152 (2018). https://doi.org/10.1007/s00418-017-1620-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1620-2

Keywords

Navigation