Skip to main content
Log in

Damping Couplings with Elements of Pseudoelastic NiTi Shape Memory Alloys

  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A coupling device for damping within a drive train is presented. For conventional damping couplings, damping is often realized by the dissipation of energy due to material damping or friction. In opposite to this, the damping effect of the presented coupling is based on the dissipated energy during the stress induced phase transformation of pseudoelastic NiTi shape memory alloys. In this contribution the design principles, experimental results, and a numerical simulation using the material law for shape memory alloys developed by Raniecki B. Lexcellent C. and Tanaka K. (Arch Mech 44(3:261–284)) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belytschko T., Liu W.K., Moran B. (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  2. Funakubo H. ed (1984) Shape memory alloys. Gordon & Breach, New York

    Google Scholar 

  3. Gadaj S.P., Nowacki W.K., Tobushi H. (1999) Temperature evolution during tensile test of TiNi shape memory alloy. Arch Mech 51(6): 649–663

    MATH  Google Scholar 

  4. Heckmann A. (2003) Mikrostruktur und Ermüdung von NiTi-Formgedächtnislegierungen. PhD thesis, Ruhr-Universität Bochum, Bochum, Germany

    Google Scholar 

  5. Heckmann, A., Hornbogen, E. On the interrelation of microstructure, localisation of transformational strain and strain rate in pseudo elastic fatigue of NiTi. In: Proceedings of SMST 2003, Pacific Grove, USA (2003)

  6. Hill R. (1968) On constitutive inequalities for simple materials. Int J Mech Phys Solids 16, 229–242

    Article  MATH  Google Scholar 

  7. Hodgson D.E., Brown J.W. (2000) Using nitinol alloys. Tech. rep., Shape Memory Applications, Inc. San Jose, CA, USA

    Google Scholar 

  8. Kestin J., Rice, J.R. A critical review of thermodynamics. In: Paradoxes in the application of thermodynamics to strained solids, pp 275–298 (1970)

  9. Khan A.S., Huang S. (1995) Continuum theory of plasticity. Wiley, New York

    MATH  Google Scholar 

  10. Klönne M. (2004) Drehschwingungsdämpfung mit NiTi-Formgedächtnislegierungen – Grundlagen und Anwendung. PhD thesis, Ruhr-Universität Bochum, Bochum, Germany

    Google Scholar 

  11. Miyazaki S., Kimura S., Otsuka K., Suzuki Y. (1984) The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals. Scr Met 18, 883–888

    Article  Google Scholar 

  12. Müller C. (2003) Thermodynamic modeling of polycrystalline shape memory alloys at finite strains. Mitteilungen aus dem Institut für Mechanik. Ruhr-Universität Bochum, Bochum, Germany

    Google Scholar 

  13. Otsuka K., Wayman C.M. (1998). Introduction. In: Otsuka K., Wayman C.M. (eds). Shape memory materials. Cambridge University Press, Cambridge, pp. 1–26

    Google Scholar 

  14. Predki, W., Klönne, M. Superelastic NiTi alloys under torsional loading. In: Proceedings of ICOMAT 2002, ICOMAT, Helsinki, Finnland, pp 807–810 (2002)

  15. Raniecki B., Lexcellent C., Tanaka K. (1992) Thermodynamic models of pseudoelastic behaviour of shape memory alloys. Arch Mech 44(3): 261–284

    MATH  MathSciNet  Google Scholar 

  16. Shaw J.A. (2000) Simulations of localized thermo-mechanical behavior in a TiNi shape memory alloy. Int J Plast 16, 541–562

    Article  MATH  Google Scholar 

  17. Simo, J.C., Hughes, T.J.R. Computational inelasticity. Interdiscip Appl Math 7 (1998)

  18. Sittner P., Novák V. (2000) Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int J Plast 16, 1243–1268

    Article  MATH  Google Scholar 

  19. Truesdell C., Toupin R.A. (1960). The classical field theories. In: Flügge S. (eds). Handbuch der Physik, vol III/1, Springer, Berlin, Heidelberg New York

    Google Scholar 

  20. Xiao H., Bruhns O.T., Meyers A. (1997) Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech 124, 89–105

    Article  MATH  MathSciNet  Google Scholar 

  21. Xiao H., Bruhns O.T., Meyers A. (1998) Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch Mech 50(6): 1015–1045

    MATH  MathSciNet  Google Scholar 

  22. Xiao H., Bruhns O.T., Meyers A. (1998) On objective corotational rates and their defining spin tensors. Int J Solids Structures 35(30): 4001–4014

    Article  MATH  MathSciNet  Google Scholar 

  23. Xiao H., Bruhns O.T., Meyers A. (1998) Strain rates and material spins. J Elast 52, 1–41

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Luig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luig, P., Oberste-Brandenburg, C., Grabe, C. et al. Damping Couplings with Elements of Pseudoelastic NiTi Shape Memory Alloys. Arch Appl Mech 76, 75–87 (2006). https://doi.org/10.1007/s00419-006-0006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-006-0006-z

Keywords

Navigation