Skip to main content
Log in

Mechanics of submerged jet cavitating action: material properties, exposure time and temperature effects on erosion

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Experimental setup with a submerged cavitating jet has been used for the study of influences of material, exposure time and working fluid temperature on the erosion process. Each of the parameters has been varied separately, and the results of erosion are analyzed in detail. Additionally, comparison of experiments with nitrated and non-nitrated material has been made in order to study the enhancement (mostly reflected as the prolonged incubation time) of erosion resistance achieved by nitrating the specimen surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

σ :

cavitation number—defined as \(\sigma =\frac{p_{\rm ref} - p_{v}}{\frac{1}{2}\rho \times u^{2}_{\rm ref}}\)

p ref :

reference (downstream) pressure (bar)

p v (T):

saturation (vapour) pressure (bar)

ρ L (T):

density of the liquid (kg/m3)

T :

temperature (°C)

L :

stand-off distance (mm)

A :

nozzle outlet cross-section area (m2)

D in :

inlet nozzle diameter (mm)

u ref :

reference velocity − exit jet velocity (m/s) = Q/A = V j

p 1 :

upstream pressure (bar) (absolute)

p 2 :

downstream pressure (bar) (absolute)

ΔW :

weight loss (mg),

ρ m :

density of the eroding material (kg/m3),

Δt :

exposure time (h, s)

Q :

K ×  √ (p 1p 2) flow rate (m3/s)

K :

constant = 4.78E-09 for divergent; (m3/s/Pa1/2) = 6.17E-09 for convergent nozzle

D out :

outlet nozzle diameter (mm)

References

  1. Zhang Yi., Wang Z. and Cui Y. (2000). The cavitation behavior of a metastable Cr–Mn–Ni steel. Wear 240: 231–234

    Article  Google Scholar 

  2. Krella A. (2005). Influence of cavitation intensity on X6crniti18-10 stainless steel performance in the incubation period. Wear 258: 1723–1731

    Article  Google Scholar 

  3. Dular M., Bachert B., Stoffel B and Sirok B. (2004). Relationship between cavitation structures and cavitation damage. Wear 257: 1176–1184

    Article  Google Scholar 

  4. Iwai Y. and Li S. (2003). Cavitation erosion in waters having different surface tensions. Wear 254: 1–9

    Article  Google Scholar 

  5. Mann B.S. and Arya V. (2002). An experimental study to correlate water jet impingement erosion resistance and properties of metallic materials and coatings. Wear 253: 650–661

    Article  Google Scholar 

  6. Okada T., Iwai Y., Hattori S. and Tanimura N. (1995). Relation between impact load and the damage produced by cavitation bubble collapse. Wear 184: 231–239

    Article  Google Scholar 

  7. Coleman S.L., Scott V.D., McEnaney B., Angell B and Stokes R.K. (1995). Comparison of tunnel and jet methods for cavitation erosion testing. Wear 184: 73–81

    Article  Google Scholar 

  8. Ahmed S.M., Hokkirigawa K., Ito Y. and Oba R. (1991). Scanning Electron Microscopy observation on the incubation period of vibratory cavitation erosion. Wear 142: 303–314

    Article  Google Scholar 

  9. Richman R.H. and McNaughton W.P. (1990). Correlation of cavitation erosion behavior with mechanical properties of metals. Wear 140: 63–82

    Article  Google Scholar 

  10. Karimi A. and Avellan F. (1986). Comparison of erosion mechanisms in different types of cavitation. Wear 113: 305–322

    Article  Google Scholar 

  11. Oba, R.: The severe cavitation erosion. In: 2nd International Symposium on Cavitation, Tokyo, Japan (1994)

  12. Soyama H. and Asahara M. (1999). Improvement of the corrosion resistance of a carbon steel surface by a cavitating jet. J. Mater. Sci. Lett. 18: 1953–1955

    Article  Google Scholar 

  13. Lecoffre, Y., Archer, A.: A method to evaluate cavitation erosion in valves. In: 3rd International Symposium on Cavitation, Grenoble, France (1998)

  14. Berchiche N., Franc J.P. and Michel J.M. (2002). A cavitation erosion model for ductile materials. J. Fluid Mech. 124: 601–606

    Google Scholar 

  15. Sulzer Brothers Limited: Guidelines for prevention of cavitation in centrifugal feedpumps. Switzerland (November), Chapt. 1–2 (1989)

  16. Ahmed S.M. (1998). Investigation of the temperature effects on induced impact pressure and cavitation erosion. Wear 218: 119–127

    Article  Google Scholar 

  17. Kwok C.T., Man H.C. and Leung L.K (1997). Effect of temperature, pH and sulphide on the cavitation erosion behavior of super duplex stainless steel. Wear 211: 84–93

    Article  Google Scholar 

  18. Iwai Y. (1983). Effect of temperature on the cavitation erosion of cast iron. Wear 85: 181–191

    Article  Google Scholar 

  19. Singer B.G. and Harvey S.J. (1979). Gas content and temperature effects in vibratory cavitation tests. Wear 52: 147–160

    Article  Google Scholar 

  20. Yamaguchi A. and Shimizu S. (1987). Erosion due to impingement of cavitating jet. Trans. ASME 109: 442–447

    Google Scholar 

  21. Guelich, J.F., Colther, A., Martens, H.J.: Cavitation noise and erosion in jet cavitation test devices and pumps, FED-Volume 154, Pumping Machinery ASME (1993)

  22. Karimi A. and Martin J.L. (1986). Cavitation erosion of materials. Int. Metals Rev. 31(1): 1–26

    Google Scholar 

  23. Simoneau, R.: Cavitation erosion of hydraulic turbines. In: Proceedings A CEA Cavitation Workshop Montréal Vancouver, IMHEF/EPFL (March) (1994)

  24. Kato, H., Shimomura, Y.: Erosive intensity measurements of cavitating jet with various configuration. CAV(2001), Session A4.002 (2001)

  25. Zhou Y.K. and Hammitt F.G. (1983). Cavitation erosion incubation period. Wear 86: 299–313

    Article  Google Scholar 

  26. Syama, H., Kumano, H., Saka, M.: A new parameter to predict cavitation erosion. CAV(2001), Session A3.002 (2001)

  27. Krella A. and Zielinski A. (2001). Characteristics of the incubation period of the cavitation erosion of aluminium-magnesium alloy PA2. Adv. Mater. Sci. 1(1): 62–73

    Google Scholar 

  28. Lecoffre, Y.: Cavitation erosion, hydrodynamic scaling laws, practical method of long-term damage prediction. CAV95, Deauville, France (1995)

  29. Hattori S., Mori H. and Okada T. (1998). Quantitative evaluation of cavitation erosion. J. Fluids Eng. 120: 179–185

    Article  Google Scholar 

  30. Williams P.R., Williams P.M. and Brown S.W.J. (1997). A technique for studying liquid jets by cavitation bubble collapse under shockwaves near a free serface. J. Non-Newton. Fluid Mech. 72: 101–110

    Article  Google Scholar 

  31. Fujikawa, S., Takasugi, N., Peng, G.: Cavitation characteristics of submerged water jet. In: 3rd International Symposium on Cavitation, Grenoble, France (1998)

  32. Karimi A. (1987). Cavitation erosion of a duplex stainless steel. Mater. Sci. Eng. 86: 191–203

    Article  Google Scholar 

  33. Karimi A. and Leo W.R. (1987). Phenomenological model for cavitation erosion rate computation. Mater. Sci. Eng. 95: 1–14

    Article  Google Scholar 

  34. Tanibayashi, H., Ogura, K., Kanehiro, K.: Factors affecting cavitation in vibratory testing device. In: 2nd International Symposium on Cavitation, Tokyo, Japan (1994)

  35. Tam K.F., Cheng F.T. and Man H.C. (2000). Improvement of cavitation erosion resistance and corrosion resistance of brass by laser surface modification. Mater. Res. Soc. Symp. 617: j3.2.1–j3.2.6

    Google Scholar 

  36. Bistafa, S.R.: Noise generated by cavitation in orifice plates. J. Fluids Eng. 111 (September) Trans. ASME 278–288 (1989)

  37. Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation, pp. 349–351. McGraw-Hill, New York (1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milos S. Nedeljkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutli, E.A.F., Nedeljkovic, M.S. & Radovic, N.A. Mechanics of submerged jet cavitating action: material properties, exposure time and temperature effects on erosion. Arch Appl Mech 78, 329–341 (2008). https://doi.org/10.1007/s00419-007-0163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0163-8

Keywords

Navigation