Skip to main content
Log in

Two nonlinear models of a transversely vibrating string

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Modeling transverse vibration of nonlinear strings is investigated via numerical solutions of partial-differential equations and an integro-partial-differential equation. By averaging the tension along the deflected string, the classic nonlinear model of a transversely vibrating string, Kirchhoff’s equation, is derived from another nonlinear model, a partial-differential equation. The partial-differential equation is obtained via neglecting longitudinal terms in a governing equation for coupled planar vibration. The finite difference schemes are developed to solve numerically those equations. An index is proposed to compare the transverse responses calculated from the two models with the transverse component calculated from the coupled equation. A steel string and a rubber string are treated as examples to demonstrate the differences between the two models of transverse vibration and their deviation from the full model of coupled vibration. The numerical results indicate that the differences increase with the amplitude of vibration. Both models yield satisfactory results of almost the same precision for vibration of small amplitudes. For large amplitudes, the Kirchhoff equation gives better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arosio A. and Panizzi S. (1996). On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348: 305–330

    Article  MATH  MathSciNet  Google Scholar 

  2. Bilbao S. and Smith J.O. (2005). Energy conserving finite difference schemes for nonlinear strings. Acustica 91: 299–311

    Google Scholar 

  3. Chen L.Q. (2005). Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58: 91–116

    Article  Google Scholar 

  4. Chen L.Q. (2005). Principal parametric resonance of axially accelerating viscoelastic strings constituted by the Boltzmann superposition principle. Proc. R. Soc. Lond. A 461: 2701–2720

    MATH  Google Scholar 

  5. Countryman M. and Kannan R. (1992). Forced oscillations of elastic strings. Q. Appl. Math. L(1): 57–71

    MathSciNet  Google Scholar 

  6. Christie I. (1984). A Galerkin method for a nonlinear integro-differential wave system. Comput. Methods Appl. Mech. Eng. 44: 229–237

    Article  MATH  MathSciNet  Google Scholar 

  7. Carrier G.F. (1945). On the nonlinear vibration problem of the elastic string. Q. J. Appl. Math. 3: 157–165

    MATH  MathSciNet  Google Scholar 

  8. Carrier G.F. (1949). A note on the vibrating string. Q. J. Appl. Math. 7: 97–101

    MATH  MathSciNet  Google Scholar 

  9. Kirchhoff G. (1867). Vorlesungen über Mathematische Physik: Mechanik. Druck und Verlag von B. G. Teubner, Leipzig

    Google Scholar 

  10. Kobayashi T. (2004). Boundary position feedback control of Kirchhoff’s non-linear strings. Math. Methods Appl. Sci. 27: 79–89

    Article  MATH  MathSciNet  Google Scholar 

  11. Irvine H.M. and Caughey T.K. (1974). The linear theory of free vibrations of a suspended cable. Proc. R. Soc. Lond. A 341: 299–315

    Article  Google Scholar 

  12. Larkin N.A. (2002). Global regular solutions for the nonhomogeneous Carrier equation. Math. Prob. Eng. 8: 15–31

    Article  MATH  MathSciNet  Google Scholar 

  13. Leissa A.W. and Saad A.M. (1994). Large amplitude vibrations of strings. J. Appl. Mech. 61: 296–301

    MATH  Google Scholar 

  14. Liu I.S. and Rincon M.A. (2003). Effect of moving boundaries on the vibrating elastic string. Appl. Numer. Math. 47: 159–172

    Article  MATH  MathSciNet  Google Scholar 

  15. Molteno T.C. and Tufillaro N.B. (2004). An experimental investigation into the dynamics of a string. Am. J. Phys. 72: 1157–1167

    Article  Google Scholar 

  16. Mote D.C. (1966). On the nonlinear oscillation of an axially moving string. J. Appl. Mech. 33: 463–464

    Google Scholar 

  17. Murthy G.S.S. and Ramakrishna B.S. (1965). Nonlinear character of resonance in stretched strings. J. Acoust. Soc. Am. 38: 461–471

    Article  Google Scholar 

  18. Narasimha R. (1968). Nonlinear vibration of an elastic strings. J. Sound Vib. 8: 134–155

    Article  MATH  Google Scholar 

  19. Nayfeh A.H. and Mook D.T. (1979). Nonlinear Oscillations. Wiley, New York

    MATH  Google Scholar 

  20. Oplinger D.W. (1960). Frequency response of a nonlinear stretched string. J. Acoust. Soc. Am. 32: 1529–1538

    Article  MathSciNet  Google Scholar 

  21. Peradze J. (2005). A numerical algorithm for the nonlinear Kirchhoff string equation. Numer. Math. 102: 311–342

    Article  MATH  MathSciNet  Google Scholar 

  22. Shahruz S.M. (1999). Boundary control of Kirchhoff’s non-linear string. Int. J. Control 72: 560–563

    Article  MATH  MathSciNet  Google Scholar 

  23. Thomas J.W. (1995). Numerical Partial Differential Equations: Finite Difference Methods. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LQ., Ding, H. Two nonlinear models of a transversely vibrating string. Arch Appl Mech 78, 321–328 (2008). https://doi.org/10.1007/s00419-007-0164-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0164-7

Keywords

Navigation