Skip to main content
Log in

Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The governing equation of motion of gradient elastic flexural Kirchhoff plates, including the effect of in-plane constant forces on bending, is explicitly derived. This is accomplished by appropriately combining the equations of flexural motion in terms of moments, shear and in-plane forces, the moment–stress relations and the stress–strain equations of a simple strain gradient elastic theory with just one constant (the internal length squared), in addition to the two classical elastic moduli. The resulting partial differential equation in terms of the lateral deflection of the plate is of the sixth order instead of the fourth, which is the case for the classical elastic case. Three boundary value problems dealing with static, stability and dynamic analysis of a rectangular simply supported all-around gradient elastic flexural plate are solved analytically. Non-classical boundary conditions, in additional to the classical ones, have to be utilized. An assessment of the effect of the gradient coefficient on the static or dynamic response of the plate, its buckling load and natural frequencies is also made by comparing the gradient type of solutions against the classical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mindlin R.D. (1964). Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16: 51–78

    Article  MATH  MathSciNet  Google Scholar 

  2. Mindlin R.D., Eshel N.N. (1968). On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4: 109–124

    Article  MATH  Google Scholar 

  3. Eringen C.A. (1966). Linear theory of micropolar elasticity. J. Math. Mech. 15: 909–923

    MATH  MathSciNet  Google Scholar 

  4. Cosserat E., Cosserat F. (1909). Theorie des Corps Deformables. Hermann et Fils, Paris

    Google Scholar 

  5. Toupin R.A. (1962). Elastic materials with couple-stresses. Arch. Rat. Mech. Anal. 11: 385–414

    Article  MATH  MathSciNet  Google Scholar 

  6. Koiter W.T. (1964). Couple stresses in the theory of elasticity, I & II. Proc. K. Ned. Akad. Wet. B 67: 17–44

    MATH  Google Scholar 

  7. Tiersten, H. F., Bleustein, J. L.: Generalized elastic continua, pp. 67–103, In: Herrmann, G. (ed.), R.D. Mindlin and Applied Mechanics, Pergamon Press, New York (1974)

  8. Vardoulakis I., Sulem J (1995). Bifurcation Analysis in Geomechanics.  Chapman and Hall, London

    Google Scholar 

  9. Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua, pp. 1–25 In: Continuum Models for Materials with Microstructure, Mühlhaus H. B. (ed.), Wiley, Chichester (1995)

  10. Exadaktylos G.E., Vardoulakis I. (2001). Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335: 81–109

    Article  Google Scholar 

  11. Altan B.S., Aifantis E.C. (1992). On the structure of the mode-III crack-tip in gradient elasticity. Scripta Metal. Mater. 26: 319–324

    Article  Google Scholar 

  12. Ru C.Q., Aifantis E.C. (1993). A simple approach to solve boundary value problems in gradient elasticity. Acta Mech. 101: 59–68

    Article  MATH  MathSciNet  Google Scholar 

  13. Tsepoura K., Papargyri-Beskou S., Polyzos D., Beskos D.E. (2002). Static and dynamic analysis of gradient elastic bars in tension. Arch. Appl. Mech. 72: 483–497

    Article  MATH  Google Scholar 

  14. Papargyri-Beskou, S., Tsepoura, K., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003) Erratum 42, 4911–4912 (2005)

    Google Scholar 

  15. Papargyri-Beskou S., Polyzos D., Beskos D.E. (2003). Dynamic analysis of gradient elastic flexural beams. Struct. Eng. Mech. 15: 705–716

    Google Scholar 

  16. Georgiadis H.G., Vardoulakis I., Velgaki E.G. (2004). Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J. Elast. 74: 17–45

    Article  MATH  MathSciNet  Google Scholar 

  17. Grentzelou C.G., Georgiadis H.G. (2005). Uniqueness for plane crack problems in dipolar gradient elasticity and in couple-stress elasticity. Int. J. Solids Struct. 42: 6226–6244

    Article  MATH  MathSciNet  Google Scholar 

  18. Giannakopoulos A.E., Amanatidou E., Aravas N. (2006). A reciprocity theorem in linear gradient elasticity and the corresponding Saint-Venant principle. Int. J. Solids Struct. 43: 3875–3894

    Article  MATH  MathSciNet  Google Scholar 

  19. Giannakopoulos A.E., Stamoulis K. (2007). Structural analysis of gradient elastic components. Int. J. Solids Struct. 44: 3440–3451

    Article  MATH  Google Scholar 

  20. Lazopoulos K.A. (2004). On the gradient strain elasticity theory of plates. Europ. J. Mech. A/Solids 23: 843–852

    Article  MATH  MathSciNet  Google Scholar 

  21. Aifantis E.C. (1999). Strain gradient interpretation of size effects. Int. J. Fract. 95: 299–314

    Article  Google Scholar 

  22. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P. (2003). Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51: 1477–1508

    Article  MATH  Google Scholar 

  23. Timoshenko S., Woinowsky-Krieger S. (1959). Theory of Plates and Shells. 2nd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  24. Chajes A. (1975). Principles of Structural Stability Theory. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  25. Graff K.F. (1975). Wave Motion in Elastic Solids. Ohio State University Press, Columbus, Ohio

    MATH  Google Scholar 

  26. Papargyri-Beskou, S., Giannakopoulos, A.E.: Boundary and initial conditions for static and dynamic problems of gradient elastic flexural plates by variational methods (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Papargyri-Beskou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papargyri-Beskou, S., Beskos, D.E. Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch Appl Mech 78, 625–635 (2008). https://doi.org/10.1007/s00419-007-0166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0166-5

Keywords

Navigation