Skip to main content
Log in

Analytical solution of plane constrained shear problem for single crystals within continuum dislocation theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Berdichevsky and Le have recently found the analytical solution of the anti-plane constrained shear problem within the continuum dislocation theory (CMT, Contin. Mech. Thermodyn. 18:455–467, 2007). Interesting features of this solution are the energetic and dissipative thresholds for dislocation nucleation, the Bauschinger translational work hardening, and the size effect. In this paper an analytical solution of the plane constrained shear problem for single crystals exhibiting similar features is obtained and the comparison with the discrete dislocation simulation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nye J.F. (1953). Some geometrical relations in dislocated crystals. Acta Metall. 1: 153–162

    Article  Google Scholar 

  2. Kondo, K.: On the geometrical and physical foundations of the theory of yielding. In: Proceedings 2. Japan Congr. Appl. Mech. pp 41–47 (1952)

  3. Bilby B.A., Bullough R., Smith E. (1955). Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A231: 263–273

    MathSciNet  Google Scholar 

  4. Kröner E. (1958). Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin

    MATH  Google Scholar 

  5. Berdichevsky V.L., Sedov L.I. (1967). Dynamic theory of continuously distributed dislocations. Its relation to plasticity theory. J. Appl. Math. Mech. (PMM) 31: 989–1006

    Article  Google Scholar 

  6. Berdichevsky V.L. (2006). Continuum theory of dislocations revisited. Contin. Mech. Thermodyn. 18: 195–222

    Article  MathSciNet  Google Scholar 

  7. Ortiz M., Repetto E.A. (1999). Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47: 397–462

    Article  MathSciNet  MATH  Google Scholar 

  8. Berdichevsky V.L. (2005). Homogenization in micro-plasticity. J. Mech. Phys. Solids 53: 2457–2469

    Article  MathSciNet  Google Scholar 

  9. Berdichevsky V.L. (2006). On thermodynamics of crystal plasticity. Scripta Mater. 54: 711–716

    Article  Google Scholar 

  10. Acharya A., Basani J.L. (2000). Incompatibility and crystal plasticity. J. Mech. Phys. Solids 48: 1565–1595

    Article  MathSciNet  MATH  Google Scholar 

  11. Needleman A., Van der Giessen E. (2001). Discrete dislocation and continuum descriptions of plastic flow. Mater. Sci. Eng. A309(310): 1–13

    Google Scholar 

  12. Shu J.Y., Fleck N.A., Van der Giessen E., Needleman A. (2001). Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. J. Mech. Phys. Solids 49: 1361–1395

    Article  MATH  Google Scholar 

  13. Groma I., Csikor F., Zaiser M. (2003). Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51: 1271–1281

    Article  Google Scholar 

  14. Huang Y., Hwang Q.S., Li K.C., Gao H. (2004). A conventional theory of mechanism-based strain gradient plasticity. J. Mech. Phys. Solids 20: 753–782

    MATH  Google Scholar 

  15. Berdichevsky V.L., Le K.C. (2007). Dislocation nucleation and work hardening in anti-planed constrained shear. Contin. Mech. Thermodyn. 18: 455–467

    Article  MathSciNet  Google Scholar 

  16. Leibfried G. (1951). Verteilung von Versetzungen im statischen Gleichgewicht. Z. Phys. 130: 214–226

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Le.

Additional information

Dedicated to the memory of George Herrmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, K.C., Sembiring, P. Analytical solution of plane constrained shear problem for single crystals within continuum dislocation theory. Arch Appl Mech 78, 587–597 (2008). https://doi.org/10.1007/s00419-007-0178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0178-1

Keywords

Navigation