Skip to main content
Log in

Why traction-free? Piezoelectric crack and Coulombic traction

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The non-zero traction condition is introduced in piezoelectric crack problems with the unknown Coulombic traction acting on the crack surfaces. An analytical solution under this condition is obtained by means of the generalized Stroh formalism and by accounting for the permittivity of medium inside the crack gap. As the crack in such materials can be thought of as a low-capacitance medium carrying a potential drop, the Coulombic traction always pulls the two opposite surfaces of the crack together. It is proved that under relatively larger mechanical loading and relatively smaller electrical field, the Coulombic traction may be negligible and the previous investigations under the traction-free crack condition may be accepted in a tolerant way, otherwise the Coulombic traction may lead to some erroneous results with over 10% relative errors. It is also shown that, unlike the traction-free crack condition, the applied electric field does change the Mode I stress intensity factor (SIF) for a central crack in an infinite plane piezoelectric material, and in this way may significantly influence piezoelectric fracture. It is also concluded that the variable tendencies of the normalized SIF and the ERR against the applied electric field depend on the mechanical loading levels. This load-dependence feature may lead to a transformation of the normalized SIF and the ERR from an even functional dependence to an odd functional dependence on the applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang T.Y., Zhao M.H. and Tong P. (2001). Fracture piezoelectric ceramics. Adv. Appl. Mech. 38: 147–289

    Google Scholar 

  2. Chen Y.H. and Lu T.J. (2003). Cracks and fracture in piezoelectrics. Adv. Appl. Mech. 39: 121–215

    Article  MathSciNet  Google Scholar 

  3. Zhang T.Y. and Gao C.F. (2004). Fracture behaviors of piezoelectric materials. Theo. Appl. Fract. Mech. 41: 339–379

    Article  MathSciNet  Google Scholar 

  4. Chen Y.H. and Hasebe N. (2005). Current understandings on fracture behaviors of ferroelectric/piezoelectric materials. J. Intel. Mater. Syst. Struct. 16: 673–687

    Article  Google Scholar 

  5. Suo Z., Kuo C.M., Barnett D.M. and Willis J.R. (1992). Fracture mechanics of piezoelectric ceramics. J. Mech. Phys. Solids 40: 739–765

    Article  MATH  MathSciNet  Google Scholar 

  6. Tobin A.C. and Pak Y.E. (1993). Effect of electric fields on fracture behavior of PZT ceramics. In: Proceedings of SPIE, Smart Structures and Materials 1916: 78–86

    Google Scholar 

  7. Park S.B. and Sun C.T. (1995). Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78: 1475–1480

    Article  Google Scholar 

  8. Park S.B. and Sun C.T. (1995). Effect of electric fields on fracture of piezoelectric ceramics. Int. J. Fract. 70: 203–216

    Article  Google Scholar 

  9. Heyer V., Schneider G.A., Balke H., Drescher J. and Bahr H.A. (1998). A fracture criterion for conducting cracks in homogeneously poled piezoelectric PZT-PIC151 ceramics. Acta Mater. 46: 6615–6622

    Article  Google Scholar 

  10. Schneider G.A. and Heyer V. (1999). Influence of the electric field on Vickers indentation crack growth in BaTiO3. J. Eur. Ceram. Soc. 19: 1299–1306

    Article  Google Scholar 

  11. Shindo Y., Ozawa E. and Nowacki J.P. (1990). Singular stress and electric fields of a cracked piezoelectric strip. Appl. Electromag. Mater. 1: 77–87

    Google Scholar 

  12. Shindo Y. and Ozawa E. (1990). Dynamic analysis of a cracked piezoelectric material. In: Hsieh, R.K.T. (eds) Mechanical Modeling of New Electromagnetic Materials, Elsevier, Amsterdam

    Google Scholar 

  13. Shindo Y., Katsura H. and Yan W. (1996). Dynamic stress intensity factor of a cracked dielectric medium in a uniform electric field. Acta Mech. 117: 1–10

    Article  MATH  Google Scholar 

  14. Shindo Y., Narita F. and Tanaka K. (1996). Electroelastic intensification near anti-plane shear crack in orthotropic piezoelectric ceramic strip. Theo. Appl. Fract. Mech. 25: 65–71

    Article  Google Scholar 

  15. Shindo Y., Tanaka K. and Narita F. (1997). Singular stress and electric fields of a piezoelectric ceramic strip under longitudinal shear. Acta Mech. 120: 31–45

    Article  MATH  Google Scholar 

  16. Shindo Y., Domon W. and Narita F. (1997). Bending of a symmetric piezothermoelastic laminated plate with a through crack. Arch. Appl. Mech. 49: 403–412

    MATH  Google Scholar 

  17. Shindo Y., Watanabe K. and Narita F. (2000). Electroelastic analysis of a piezoelectric ceramic strip with a central crack. Int. J. Eng. Sci. 38: 1–19

    Article  Google Scholar 

  18. Parton V.Z. (1976). Fracture mechanics of piezoelectric materials. Acta Astro. 3: 671–683

    Article  MATH  Google Scholar 

  19. Deeg, W.F.: The analysis of dislocation, cracks, and inclusion problems in piezoelectric solids. PhD These, Stanford University, Stanford (1980)

  20. Parton V.Z. and Kudryavtsev B.A. (1988). Electromagnetoelasticity. Gordon and Breach Science Publishers, New York

    Google Scholar 

  21. Hao T.H. and Shen Z.Y. (1994). A new electric boundary condition of electric fracture mechanics and its application. Eng. Fract. Mech. 47: 793–802

    Article  Google Scholar 

  22. Dunn M. (1994). The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids. Eng. Fract. Mech. 48: 25–39

    Article  Google Scholar 

  23. Sosa H. and Khutoryansky N. (1996). New development concerning piezoelectric materials with defects. Int. J. Solids Struct. 33: 3399–3414

    Article  MATH  MathSciNet  Google Scholar 

  24. Chung M.Y. and Ting T.C.T. (1996). Piezoelectric sold with an elliptic inclusion or hole. Int. J. Solids Struct. 33: 3343–3361

    Article  MATH  MathSciNet  Google Scholar 

  25. Gao H., Zhang T.Y. and Tong P. (1997). Local and Global energy release rates for an electrically yielded crack in a piezoelectric ceramic, J. Mech. Phys. Solids 45: 491–510

    Article  Google Scholar 

  26. Chen Y.H. and Han J.J. (1999). Macrocrack-microcrack interaction in piezoelectric materials. Part I. Basic formulations and J-analysis. ASME J. Appl. Mech. 66: 514–521

    Article  Google Scholar 

  27. Chen Y.H. and Han J.J. (1999). Macrocrack-microcrack interaction in piezoelectric materials, Part II. Numerical results and Discussions. ASME J. Appl. Mech. 66: 522–527

    Google Scholar 

  28. Fulton C.C. and Gao H. (2001). Effect of local polarization switching on piezoelectric fracture. J. Mech. Phys. Solids 49: 927–952

    Article  MATH  Google Scholar 

  29. Xu X.L. and Rajapakse R.K.N.D. (1999). Analytical solution for an arbitrarily oriented void/crack and fracture of piezoceramics. Acta Mater. 47: 1735–1747

    Article  Google Scholar 

  30. Xu X.L. and Rajapakse R.K.N.D. (2001). On a plane crack in piezoelectric solids. Int. J. Solids Struct. 38: 7643–7658

    Article  MATH  Google Scholar 

  31. McMeeking R.M. (1990). A J-integral for the analysis of electrically induced mechanical stress at cracks in elastic dielectrics. Int. J. Eng. Sci. 28: 605–613

    Article  MATH  Google Scholar 

  32. McMeeking R.M. (1999). Crack tip energy release rate for a piezoelectric compact tension specimen. Eng. Fract. Mech. 64: 217–244

    Article  Google Scholar 

  33. McMeeking R.M. (2001). Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int. J. Fract. 108: 25–41

    Article  Google Scholar 

  34. Landis C.M. (2004). Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids Struct. 41: 6291–6315

    Article  MATH  Google Scholar 

  35. McMeeking R.M. (2004). The energy release rate for a Griffith crack in a piezoelectric material. Eng. Fract. Mech. 71: 1149–1163

    Article  Google Scholar 

  36. Gruebner O., Kamlah M. and Munz D. (2003). Finite element analysis of cracks in piezoelectrics taking into account the permittivity of the crack medium. Eng. Fract. Mech. 70: 1399–1413

    Article  Google Scholar 

  37. Ou Z.C. and Chen Y.H. (2003). Discussion of the crack face electric boundary condition in piezoelectric fracture mechanics. Int. J. Fract. 123: L151–L155

    Article  Google Scholar 

  38. Ou Z.C. and Chen Y.H. (2005). On approach of crack tip energy release rate for a semi-permeable crack when electromechanical loads become very large. Int. J. Fract. 133: 89–105

    Article  MATH  Google Scholar 

  39. Haug A. and McMeeking R.M. (2001). Energy release rate for a crack with extrinsic surface charge in a piezoelectric compact tension specimen. Solid Mech. Appl. 84: 349–360

    Article  Google Scholar 

  40. Riceour A., Enderlein M. and Kuna M. (2005). Calculation of the J-integral for limited permeable cracks in piezoelectrics. Arch. Appl. Mech. 74: 536–549

    Article  Google Scholar 

  41. Stevanović Hedrih K. and Perić L. (2003). Methods for solving problems of electroelastic piezoelectric bodies with defect applying spatial anaysis in MATLAM, FACTA UNIVERSITATIS Series: Mechanics. Autom. Control Robot. 3: 511–532

    Google Scholar 

  42. Hedrih Stevanović K. and Perić Lj. (2003). Application of function of complex variable and MATLAB to analysis of piezoelectric body stress and strain state with crack. Int. J Nonlinear Sci. Numer. Simul. 4: 339–360

    Google Scholar 

  43. Wippler K., Ricoeur A. and Kuna M. (2004). Towards the computation of electrically permeable cracks in piezoelectrics. Eng. Frac. Mech. 71: 2567–2587

    Article  Google Scholar 

  44. Munir, H.N., Brussel, M.K.: Electricity and magnetism. University of Illinois at Urbana-Champaign, New York (1985)

  45. England A.H. (1965). A crack between dissimilar media. ASME J. Appl. Mech. 32: 400–402

    Google Scholar 

  46. Fu R. and Zhang T.Y. (2000). Effect of an applied electric field on the fracture toughness of lead zirconate titanate ceramics. J. Am. Ceram. Soc. 83: 1215–1218

    Article  Google Scholar 

  47. Sun C.T. and Park S.B. (2000). Measuring fracture toughness of piezoelectrics by Vickers indentation under the influence of electric fields. Ferroelectrics 248: 79–95

    Article  Google Scholar 

  48. Ting T.C.T. (1986). Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. Int. J. Solids Struct. 22: 965–983

    Article  MATH  MathSciNet  Google Scholar 

  49. Ting T.C.T. (1990). Interface crack in anisotropic bimaterials. J. Mech. Phys. Solids 38: 505–513

    Article  Google Scholar 

  50. Muskhelishvili N.I. (1953). Some basic problems of mathematical theory of elasticity. Noordhoof, Leyden

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Chen, Y.H. Why traction-free? Piezoelectric crack and Coulombic traction. Arch Appl Mech 78, 559–573 (2008). https://doi.org/10.1007/s00419-007-0180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0180-7

Keywords

Navigation