Skip to main content
Log in

Pressure dependence of the instability of multiwalled carbon nanotubes conveying fluids

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on an elastic beam model, the instability of multiwalled carbon nanotubes (MWCNTs) induced by the moving fluid inside is investigated. At critical flow velocities, the MWCNTs become unstable and undergo pitchfork bifurcation and subsequently Hopf bifurcation. These critical velocities are found to increase very quickly with respect to decreasing inner radius and are inversely proportional to the length-to-outer-radius ratio. The effect of the van der Waals (vdW) interaction between tubes is investigated and it is found that the vdW interaction can enhance the stability of MWCNTs in general, but the vdW interaction reduces the stability capacity of MWCNTs with very small inner radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gadd G.E., Blackford M. and Moricca S. (1997). The world’s smallest gas cylinders. Science 277: 933–936

    Article  Google Scholar 

  2. Gao Y. and Bando Y. (2002). Carbon nanothermometer containing gallium. Nature 415: 599

    Article  Google Scholar 

  3. Hummer G., Rasaiah J.C. and Noworyta J.P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414: 188–190

    Article  Google Scholar 

  4. Hanasaki I. and Nakatani A. (2006). Water flow through carbon nanotube junctions as molecular convergent nozzles. Nanotechnology 17: 2794–2804

    Article  Google Scholar 

  5. Supple S. and Quirke N. (2005). Molecular dynamics of transient oil flows in nanopores. II. Density profiles and molecular structure for decane in carbon nanotubes. J. Chem. Phys. 122: 104706

    Article  Google Scholar 

  6. Supple S. and Quirke N. (2004). Molecular dynamics of transient oil flows in nanopores I: imbibition speeds for single wall carbon nanotubes. J. Chem. Phys. 121: 8571–8579

    Article  Google Scholar 

  7. Sokhan V.P., Nicholson D. and Quirke N. (2002). Fluid flow in nanopores: accurate boundary conditions for carbon nanotubes. J. Chem. Phys. 117: 8531–8539

    Article  Google Scholar 

  8. Mao Z. and Sinnott S.B. (2000). A computational study of molecular diffusion and dynamic flow through carbon nanotubes. J. Phys. Chem. B 104: 4618–4624

    Article  Google Scholar 

  9. Skoulidas A., Ackerman D.M., Johnson K.J. and Sholl D.S. (2002). Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89: 185901–185911

    Article  Google Scholar 

  10. Tuzun R.E., Noid D.W., Sumpter B.G. and Merkle R.C. (1996). Dynamics of fluid flow inside carbon. Nanotub. Nanotechnol. 7: 241–246

    Article  Google Scholar 

  11. Yakobson B.I., Brabec C.J. and Bernholc J. (1996). Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76: 2511–2514

    Article  Google Scholar 

  12. He X.Q., Kitipornchai S., Wang C.M. and Liew K.M. (2005). Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. Int. J. Solids Struct. 42: 6032–6047

    MATH  Google Scholar 

  13. Liew K.M., Wong C.H., He X.Q., Tan M.J. and Meguid S.A. (2004). Nanomechanics of single and multi-walled carbon nanotubes. Phys. Rev. B 69: 115429

    Article  Google Scholar 

  14. Mahan G.D. (2002). Oscillations of a thin hollow cylinder: carbon nanotube. Phys. Rev. B 65: 235402

    Article  Google Scholar 

  15. Rao A.M., Chen J., Richter E., Schlecht U., Eklund P.C., Haddon R.C., Venkateswaran U.D., Kwon Y.K. and Tomanek D. (2001). Effect of van der Waals interaction on the Raman modes in single walled carbon nanotubes. Phys. Rev. Lett. 86: 3895

    Article  Google Scholar 

  16. Garg A., Han J. and Sinnott S. (1998). Interactions of carbon-nanotubule proximal probe tips with diamond and graphene. Phys. Rev. Lett. 81: 2260–2263

    Article  Google Scholar 

  17. Treacy M.M.J., Ebbesen T.W. and Gibson J.M. (1996). Exceptionally high Yong’s modulus observed for individual carbon nano-tubes. Nature 381: 678

    Article  Google Scholar 

  18. Poncharal P., Wang Z.L., Ugarte D. and Heer W.A. (1999). Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283: 1513

    Article  Google Scholar 

  19. Gogotsi Y. (2001). In situ multiphase fluid experiments in hydrothermal CNTs. Appl. Phys. Lett. 79: 1021–1023

    Article  Google Scholar 

  20. Longhurst M.J. and Quirke N. (2006). Shell model approximation for internally and externally adsorbed fluids. J. Chem. Phys. 125: 184705

    Article  Google Scholar 

  21. Yoon J., Ru C.Q. and Mioduchowski A. (2005). Vibration and instability of CNTs conveying fluid. Compos. Sci. Technol 65: 1326–1336

    Article  Google Scholar 

  22. Yoon J., Ru C.Q. and Mioduchowski A. (2006). Flow-induced flutter instability of cantilever CNTs. Int. J. Solids Struct. 43: 3337–3349

    Article  MATH  Google Scholar 

  23. Endo M., Muramatsu H., Hayashi T., Kim Y.A., Terrones M. and Dresselhaus M.S. (2005). Nanotechnology: “buckypaper” from coaxial nanotubes. Nature 433: 476

    Article  Google Scholar 

  24. Natsuki T., Ni Q.Q. and Endo M. (2007). Wave propagation in single- and double-walled carbon nanotubes filled with fluids. J. Appl. Phys. 101: 034319

    Article  Google Scholar 

  25. Travis K.P. and Evans D.J. (1996). Molecular spin in a fluid undergoing Poiseuille flow. Phys. Rev. E 55: 1566

    Article  Google Scholar 

  26. Koplik J., Banavar J.R. and Willemsen J.F. (1989). Molecular dynamics of fluid at solid surfaces. Phys. Fluids. A 1: 781

    Article  Google Scholar 

  27. Pozhar L.A. (2000). Structure and dynamics of nanofluids: theory and simulations to calculate viscosity. Phys. Rev. E 61: 1432

    Article  Google Scholar 

  28. Travis K.P. and Gubbins K.E. (2000). Poiseuille flow of Lennard–Jones fluids in narrow slip pores. J. Chem. Phys. 112: 1984

    Article  Google Scholar 

  29. Travis K.P., Todd B.D. and Evans D.J. (1997). Departure from Navier–Stokes hydrodynamics in confined liquids. Phys. Rev. E 55: 4288

    Article  Google Scholar 

  30. He X.Q., Kitipornchai S. and Liew K.M. (2005). Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solid 53: 303–326

    Article  MATH  Google Scholar 

  31. Saito R., Matsuo R., Kimura T., Dresselhaus G. and Dresselhaus M.S. (2001). Anomalous potential barrier of double-wall carbon nanotube. Chem. Phys. Lett. 348: 187

    Article  Google Scholar 

  32. Zhang L.X. and Yang K. (2004). The Theory and Its Applications of Fluid-Structure Interaction (in Chinese). Science Press, Beijing

    Google Scholar 

  33. Paidoussis M.P. (1998). Fluid–Structure Interactions, Vol. 1. Academic, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X.Q., Wang, C.M., Yan, Y. et al. Pressure dependence of the instability of multiwalled carbon nanotubes conveying fluids. Arch Appl Mech 78, 637–648 (2008). https://doi.org/10.1007/s00419-007-0184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0184-3

Keywords

Navigation