Skip to main content
Log in

Effects of shear deformation on vibration of doublewalled carbon nanotubes embedded in an elastic medium

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, free vibration of simply supported multi-walled carbon nanotubes (CNTs) embedded in an elastic medium was investigated by using the generalized shear deformation-beam theory (GSDBT). The effects of surrounding elastic medium, which is considered as a spring, defined by the Winkler model, and van der Waals forces from adjacent nanotubes are taken into account. Third-order shear deformation (TOSD) theory is used to study free vibration of a multi-walled carbon nanotube embedded in an elastic medium. Unlike Timoshenko beam theory, TOSD theory satisfies zero traction boundary conditions on the upper and lower surface of the structures, so there is no need to use a shear correction factor. Free vibration frequencies and amplitude ratios were obtained for various sides to thickness ratios and elastic medium effects and results are compared with previous studies. The results showed that significant difference exist between TOSD and Euler beam theory. It is also interesting to note that, although frequency parameter is increasing by increasing stiffness of embedded medium, amplitude ratios are insensitive to stiffness of embedded elastic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aydogdu M. (2005). Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Int. J. Mech. Sci. 47(11): 1740–1755

    Article  Google Scholar 

  2. Bachtold A., Hadley P., Nakanishi T. and Dekker C. (2001). Logic circuits with carbon nanotubes transistors. Science 294: 1317–1320

    Article  Google Scholar 

  3. Bower C., Rosen R., Jin L., Han J. and Zhou J. (1999). Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 74: 3317–3319

    Article  Google Scholar 

  4. Dai H., Hafner J.H., Rinzler A.G., Colbert D.T. and Smalley R.E. (1996). Nanotubes as nanoprobes in scanning probe microscopy. Nature 384: 147–150

    Article  Google Scholar 

  5. Ece M.C. and Aydogdu M. (2007). Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190: 185–195

    Article  MATH  Google Scholar 

  6. Falvo M.R., Clary G.J., Taylor R.M., Chi V., Brooks F.P. and Washburn S. (1997). Bending and buckling of carbon nanotubes under large strain. Nature 389: 582–584

    Article  Google Scholar 

  7. Fu Y.M., Hong J.W. and Wang X.Q. (2006). Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound Vib. 296: 746–756

    Article  Google Scholar 

  8. Gibson R.F., Ayorinde E.O. and Wen Y.F. (2007). Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67: 1–28

    Article  Google Scholar 

  9. Hahn H.T. and Williams J.G. (1984). Compresion failure mechanisms in unidirectional composites. Compos. Mater.: Test. Des. 7: 115–139

    Google Scholar 

  10. Iijima S. (1991). Helical microtubules of graphitic carbon. Nature 354: 56–58

    Article  Google Scholar 

  11. Kalamkarov A.L., Georgiades A.V., Rokkan S.K., Veedu V.P. and Ghasemi-Nejhad M.N. (2006). Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43(22–23): 6832–6854

    Article  MATH  Google Scholar 

  12. Kim P. and Lieber C.M. (1999). Nanotube nanotweezers. Science 286: 2148–2150

    Article  Google Scholar 

  13. Lanir Y. and Fung Y.C.B. (1972). Fiber composite columns under compressions. J. Compos. Mater. 6: 387–401

    Google Scholar 

  14. Lourie O., Cox D.M. and Wagner H.D. (1998). Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81: 1638–1641

    Article  Google Scholar 

  15. Qian D., Dickey E.C., Andrews R. and Rantell T. (2000). Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76: 2868–2870

    Article  Google Scholar 

  16. Reddy J.N. (1984). A simple higher-order theory for laminated composite plates. J. Appl. Mech. Trans. ASME 51(4): 745–752

    Article  MATH  Google Scholar 

  17. Ru C.Q. (2000). Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62: 9973–9976

    Article  Google Scholar 

  18. Ru C.Q. (2000). Elastic buckling of single-walled carbon nanotube ropes under high pressure. Phys. Rev. B 62: 10405–10408

    Article  Google Scholar 

  19. Soldatos K.P. (1992). A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3–4): 195–220

    Article  MATH  MathSciNet  Google Scholar 

  20. Soldatos K.P. and Timarci T. (1993). A unified formulation of laminated composite, shear deformable, five degrees of freedom cylindrical shell theories. Compos. Struct. 25(1–4): 165–171

    Article  Google Scholar 

  21. Tserpes K.I. and Papanikos P. (2005). Finite element modeling of single-walled carbon nanotubes. Compos. Part B: Eng. 36: 468–477

    Article  Google Scholar 

  22. Thostenson E.T., Ren Z. and Chou T.W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Tech. 61: 1899–1912

    Article  Google Scholar 

  23. Thostenson E.T., Li W.Z., Wang D.Z., Ren Z.F. and Chou T.W. (2002). Carbon nanotube/carbon fibers hybrid multiscale composites. Appl. Phys. Lett. 91: 6034–6036

    Google Scholar 

  24. Wagner H.D., Lorie O., Feldman Y. and Tenne R. (1998). Stress-induced fragmentation of multi-walled carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72: 188–190

    Article  Google Scholar 

  25. Wang C.M., Tan V.B.C. and Zhang Y.Y. (2006). Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 294: 1060–1072

    Article  Google Scholar 

  26. Wang Q. and Varadan V.K. (2005). Wave characteristics of carbon nanotubes. Int. J. Solid Struct. 43: 254–65

    Article  Google Scholar 

  27. Wong E.W., Sheehan P.E. and Lieber C.M. (1997). Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277: 1971–1975

    Article  Google Scholar 

  28. Yakobson B.I., Brabec C.J. and Bernholc J. (1996). Nanomechanics of carbon nanotubes: instability beyond linear response. Phys. Rev. Lett. 76: 2511–2514

    Article  Google Scholar 

  29. Yoon, J., Ru, C.Q., Mioduchowski, A.: Non-coaxial resonance of an isolated multiwall carbon nanotube. Phys. Rev. B 66, Art. No. 233402 (2002)

  30. Yoon J., Ru C.Q. and Mioduchowski A. (2003). of embedded multiwall carbon nanotubes. Compos. Sci. Techn. 63: 1533–1542

    Article  Google Scholar 

  31. Yoon J., Ru C.Q. and Mioduchowski A. (2003). Sound wave propogation in multiwall carbon nanotubes. J. Appl. Phys. 93: 4801–4806

    Article  Google Scholar 

  32. Yoon J., Ru C.Q. and Mioduchowski A. (2004). Timoshenko-beam effects on transverse wave propagation in carbon nanotubes. Compos. Part B: Eng. 35: 87–93

    Article  Google Scholar 

  33. Yoon J., Ru C.Q. and Mioduchowski A. (2005). Terahertz vibration of short carbon nanotubes modelled as Timoshenko-beams. Trans. ASME 72: 10–17

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Aydogdu.

Additional information

Dedicated to the honorable memory of my beloved mother Fatma Aydogdu (Romania,1933-Tekirdag, August 7, 2007)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydogdu, M. Effects of shear deformation on vibration of doublewalled carbon nanotubes embedded in an elastic medium. Arch Appl Mech 78, 711–723 (2008). https://doi.org/10.1007/s00419-007-0189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0189-y

Keywords

Navigation