Skip to main content
Log in

Non-reversible friction modeling and identification

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, based on experimental results, a new non-reversible friction model is proposed. The model has the capability to include both hysteresis in the presliding regime and velocity hysteresis (frictional memory effect or frictional lag) in the sliding regime. In this model, a differential function, which varies between −1 and +1 and has the characters of the Bouc–Wen model, is used to take the place of a sign function. This solution smoothes the transition from presliding to sliding and the hysteresis in the presliding regime can be described. In the sliding regime, this model has the form of a combination of a general velocity-dependent model with another acceleration-dependent part. This form allows a good description of velocity hysteresis in the sliding regime. The parameter identification procedure for this new model is also presented in this paper. The simulation results show the practicability and accuracy of the model in describing friction force both in the presliding and the sliding regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorczyca-Cole J.L., Sherwood J.A. and Chen J. (2007). A friction model for thermostamping commingled glass-polypropylene woven fabrics. Composites A 38: 393–406

    Article  Google Scholar 

  2. Choi J.J., Han S.I. and Kim J.S. (2006). Development of a novel dynamic friction model and precise tracking control using adaptive back-stepping sliding model controller. Mechatronics 16: 97–104

    Article  Google Scholar 

  3. Livanos G.A. and Kyrtatos N.P. (2007). Friction model of a marine diesel engine piston assembly. Tribol. Int. 40: 1441–1453

    Article  Google Scholar 

  4. Armstrong-Hélouvry B., Dupont P. and Canudas de Wit C. (1994). A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7): 1083–1138

    Article  MATH  Google Scholar 

  5. Björklund S. (1997). A random model for micro-slip between nominally flat surfaces. ASME J. Tribol. 119: 726–732

    Article  Google Scholar 

  6. Sampson J.B., Morgan F., Reed D.W. and Muskat M. (1943). Friction behavior during the slip portion of the stick-slip process. J. Appl. Phys. 14(12): 689–700

    Article  Google Scholar 

  7. Rabinowicz E. (1958). The intrinsic variables affection the stick-slip process. Proc. Phys. Soc. Lond. 471: 668–675

    Article  Google Scholar 

  8. Dahl, P.R.: A solid friction model. The Aerospace Corporation, EI Segundo, CA, Tech. Rep. TOR-158, pp. 3107–3118

  9. Futami S., Furutani A. and Yoshida S. (1990). Nanometer positioning and its micro-dynamics. Nanotechnology 1(1): 31–37

    Article  Google Scholar 

  10. Iwan, W.D., Caughey, T.K.: The Dynamic Response of Bilinear Hysteretic Systems. PhD Thesis, California Institute of Technology, California (1961)

  11. Bouc, R.: Forced vibration of mechanical system with hysteresis. In: Proceedings of the 4th Conference on Nonlinear Oscillations. Prague, P. 315 (1967)

  12. Wen Y.K. (1976). Method of random vibration of hysteretic systems. ASCE J. Eng. Mech. Div. 102: 249–263

    Google Scholar 

  13. Rabinowicz E (1958). The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. Lond. 471: 668–675

    Article  Google Scholar 

  14. Bell R. and Burdekin M. (1969–1970). A study of the stick-slip motion of machine tool feed drives. Proc. Inst. Mech. Eng. 184(1): 543–557

    Article  Google Scholar 

  15. Hess D.P. and Soom A. (1990). Friction at lubricated line contact operation at oscillating sliding velocities. ASME J.Tribol. 112: 147–152

    Article  Google Scholar 

  16. Den Hartog J.P. (1931). Forced vibration with Combined Coulomb and Viscous Friction. Trans. ASME APM 53(9): 107–115

    Google Scholar 

  17. Popp K. and Stelter P. (1990). Non-linear oscillations of structures induced by dry friction. In: Schiehlen, W. (eds) Non-Linear Dynamics in Engineering Systems, pp. Springer, New York

    Google Scholar 

  18. Powell J. and Wiercigroch M. (1992). Influence of nonreversible Coulomb characteristics on the response of a harmonically excited linear oscillator. Mach. Vib. I(2): 94–104

    Google Scholar 

  19. Wiercigroch M. (1993). Comments on the study of a harmonically excited linear oscillator with a Coulomb damper. J. Sound Vib. 167(3): 560–563

    Article  Google Scholar 

  20. Stefañski A., Wojewoda J., Wiercigroch M. and Kapitaniak T. (2003). Chaos caused by non-reversible dry friction. Chaos Solitons Fractals 16: 661–664

    Article  MATH  Google Scholar 

  21. Stefañski A., Wojewoda J. and Furmanik K. (2001). Experimental and numerical analysis of self-excited friction oscillator. Chaos Solitons Fractals 12: 1691–1704

    Article  MATH  Google Scholar 

  22. Wojewoda J., Kapitaniak T., Barron R. and Brindley J. (1993). Complex behavior of a quasiperiodically forced system with dry friction. Chaos Solitons Fractals 3(1): 35–46

    Article  MATH  Google Scholar 

  23. Canudasde Wit C., Olsson H., Astrom K.J. and Lischinsky P. (1995). A new model for control of systems with friction. IEEE Trans. Automat. Contr. 40(3): 419–425

    Article  MathSciNet  Google Scholar 

  24. Armstrong-Hélouvry B., Dupont P. and Canudasde Wit C. (1994). A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7): 1083–1138

    Article  MATH  Google Scholar 

  25. Stefañski A., Wojewoda J., Wiercigroch M. and Kapitaniak T. (2006). Regular and chaotic oscillations of friction force. Proc. IMechE C J. Mech. Eng. Sci. 220: 273–284

    Google Scholar 

  26. Sofonea M., Rodríguez-Arós A. and Viaño J.M. (2005). A class of integro-differential variational inequalities with applications to viscoelastic contact. Math. Comput. Model. 41: 1355–1369

    Article  MATH  Google Scholar 

  27. Ikhouane F. and Rodellar J. (2005). On the hysteretic Bouc–Wen model, Part I: Forced limit cycle characterization. Nonlinear Dyn. 42: 63–78

    Article  MATH  MathSciNet  Google Scholar 

  28. Al-Bender F., Lampaert V. and Swevers J. (2004). Modeling of dry sliding friction dynamics: From heuristic models to physically motivated models and back. Chaos 14(2): 446–460

    Article  Google Scholar 

  29. Lampaert V., Al-vender F. and Swevers J. (2004). Tribol.Lett. 16: 95

    Article  Google Scholar 

  30. Kappagantu, R., Feeny, B.: Impact and friction of solids, structures and intelligent machines. In: Guran A. (ed.) Series on Stability, Vibration and Control of Systems: Series B, Vol. 14. World Scientific, Singapore, pp. 167–172 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, K., Zhang, X., Li, H. et al. Non-reversible friction modeling and identification. Arch Appl Mech 78, 795–809 (2008). https://doi.org/10.1007/s00419-007-0200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0200-7

Keywords

Navigation