Skip to main content
Log in

Modal parameter identification based on ARMAV and state–space approaches

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An accurate prediction for the response of civil and mechanical engineering structures subject to ambient excitation requires the information of dynamic properties of these structures including natural frequencies, damping ratios and mode shapes. Since the excitation force is not available as a measured signal, we need to develop techniques which are capable of accurately extracting the modal parameters from output-only data. This article presents the results of modal parameter identification using two time-domain methods as follows: the autoregressive moving average vector (ARMAV) method and the state–space method. These methods directly work with the recorded time signals and allow the analysis of structures where only the output is measured, while the input is unmeasured and unknown. The equivalence between ARMAV and state–space approaches for the problem of modal parameter identification of vibrating systems is shown in the article. Using only the singular value decomposition of a block Hankel matrix of sample covariances, it is shown that these two approaches give identical modal parameters in the case where the block Hankel matrix has full row rank. The time-domain modal identification algorithms have a serious problem of model order determination: when extracting structural modes these algorithms always generate spurious modes. A modal indicator to differentiate spurious and structural modes is presented. Numerical and experimental examples are given to show the effectiveness of the ARMAV or state–space approaches in modal parameter identification using response data only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ljung L.: System Identification-Theory for the User. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  2. Juang J.N.: Applied System Identification. Prentice-Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  3. Pandit S.M., Wu S.M.: Time Series and System Analysis with Applications. Wiley, New York (1983)

    MATH  Google Scholar 

  4. Pandit S.M.: Modal and Spectrum Analysis: Data Dependent Systems in State Space. Wiley, New York (1991)

    MATH  Google Scholar 

  5. Harris C.M.: Shock and Vibration Handbook. Mc-Graw Hill, New York (1996)

    Google Scholar 

  6. Papagiannopoulos G.A., Beskos D.E.: On a modal damping identification model of building structures. Arch. Appl. Mech. 76, 443–463 (2006)

    Article  MATH  Google Scholar 

  7. Kompalka S.A., Reese S., Bruhns O.T.: Experimental investigation of damage evolution by data-driven stochastic subspace identification and iterative finite element model updating. Arch. Appl. Mech. 77, 559–573 (2007)

    Article  Google Scholar 

  8. Lardies J.: State space identification of vibrating systems from multi output measurements. Mech. Syst. Signal Process 12, 543–558 (1998)

    Article  Google Scholar 

  9. Van Overschee P., De Moor B.: Subspace identification for linear systems: theory implementation and applications. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  10. Pi Y.L., Mickleborough N.C.: Modal identification of a vibrating structure in the time-domain. Comput. Struct. 32, 1105–1115 (1989)

    Article  MATH  Google Scholar 

  11. Lardiès J., Ta M.N., Berthillier M.: Modal parameter estimation based on the wavelet transform of output data. Arch. Appl. Mech. 73, 718–733 (2004)

    Article  MATH  Google Scholar 

  12. Ruzzene M., Fasana A., Garibaldi L., Piombo B.: Natural frequencies and damping identification using the wavelet transform: application to real data. Mech. Syst. Signal Process 11, 207–218 (1997)

    Article  Google Scholar 

  13. Ibrahim S.R.: Random decrement technique for modal identification structures. J. Spacecr. Rockets 14, 696–700 (1977)

    Article  Google Scholar 

  14. Petsounis K.A., Fassois S.D.: Parametric time-domain methods for the identification of vibrating structures-critical comparison and assessment. Mech. Syst. Signal Process 15, 1031–1060 (2001)

    Article  Google Scholar 

  15. Zhang Y., Zhang Z., Xu X., Hua H.: Modal parameter identification using response data only. J. Sound Vib. 282, 367–380 (2005)

    Article  Google Scholar 

  16. Peeters B., De Roeck G.: Stochastic system identification for operational modal analysis: a review. J. Dyn. Syst. Meas. Control 123, 659–667 (2001)

    Article  Google Scholar 

  17. Hermans L., Van Der Auweraer H.: Modal testing of structures under operational conditions: industrial applications. Mech. Syst. and Signal Process 13, 193–216 (1999)

    Article  Google Scholar 

  18. Mevel L., Basseville M., Goursat M.: Stochastic subspace-based structural identification and damage detection—application to the steel quake benchmark. Mech. Syst. Signal Process 17, 91–101 (2003)

    Article  Google Scholar 

  19. Huang C.S.: Structural identification from ambient vibration measurements using the multivariate AR model. J. Sound Vib. 241, 337–359 (2001)

    Article  Google Scholar 

  20. Garibaldi L., Giorcelli E., : ARMAV techniques for traffic excited bridges. J. Vib. Acoust. 120, 713–718 (1998)

    Article  Google Scholar 

  21. Pi Y.L., Mickleborough N.C.: Modal identification of vibrating structures using ARMA model. J. Eng. Mech. 115, 2232–2250 (1989)

    Article  Google Scholar 

  22. Lenzen A., Walter H.: Damage detection by system identification. An application of the generalized singular value decomposition. Arch. Appl. Mech. 66, 555–568 (1996)

    Article  MATH  Google Scholar 

  23. Aoki M.: State Space Modeling of Time Series. Springer, Berlin (1990)

    Google Scholar 

  24. Viberg M.: Subspace-based methods for the identification of linear-time invariant systems. Automatica 31, 1835–1851 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rao S.: Mechanical Vibrations. Addison-Wesley, Reading (1995)

    Google Scholar 

  26. Barbieri N., Honorato de Souza Junior O., Barbieri R.: Dynamical analysis of transmission line cables. Linear Theory. Mech. Syst. Signal Process 15, 1031–1060 (2001)

    Google Scholar 

  27. Ren, W.X., Chen, G.: Experimental modal analysis of stay cables in cable-stayed bridges. In: Proceedings of the 21th IMAC, Kissimmee, Florida (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Lardies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lardies, J. Modal parameter identification based on ARMAV and state–space approaches. Arch Appl Mech 80, 335–352 (2010). https://doi.org/10.1007/s00419-009-0322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0322-1

Keywords

Navigation