Skip to main content
Log in

On generalized Cosserat-type theories of plates and shells: a short review and bibliography

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

One of the research direction of Horst Lippmann during his whole scientific career was devoted to the possibilities to explain complex material behavior by generalized continua models. A representative of such models is the Cosserat continuum. The basic idea of this model is the independence of translations and rotations (and by analogy, the independence of forces and moments). With the help of this model some additional effects in solid and fluid mechanics can be explained in a more satisfying manner. They are established in experiments, but not presented by the classical equations. In this paper the Cosserat-type theories of plates and shells are debated as a special application of the Cosserat theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikary D.P., Dyskin A.V.: A continuum model of layered rock masses with non-associative joint plasticity. Int. J. Numer. Anal. Methods Geomech. 22(4), 245–261 (1998)

    Article  MATH  Google Scholar 

  2. Adhikary D.P., Guo H.: An orthotropic Cosserat elasto-plastic model for layered rocks. Rock Mech. Rock Eng. 35(3), 161–170 (2002)

    Article  Google Scholar 

  3. Aero E.L., Kuvshinskii E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys. Solid State 2(7), 1272–1281 (1961)

    Google Scholar 

  4. Aero E.L., Kuvshinskii E.V.: Continuum theory of asymmetric elasticity. Equilibrium of an isotropic body (in Russian). Fizika Tverdogo Tela 6, 2689–2699 (1964)

    MathSciNet  Google Scholar 

  5. Aero E.L., Bulygin A.N., Kuvshinskii E.V.: Asymmetric hydromechanics. J. Appl. Math. Mech. 29(2), 333–346 (1965)

    Article  MATH  Google Scholar 

  6. Aganović I., Tambača J., Tutek Z.: Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity. J. Elast. 84, 131–152 (2006)

    Article  MATH  Google Scholar 

  7. Allen S.J., DeSilva C.N., Kline K.A.: A theory of simple deformable directed fluids. Phys. Fluids 10(12), 2551–2555 (1967)

    Article  MATH  Google Scholar 

  8. Altenbach H.: Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen. Ingenieur Archiv. 58, 215–228 (1988)

    Article  MATH  Google Scholar 

  9. Altenbach H., Eremeyev V.A.: Direct approach based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78(10), 775–794 (2008)

    Article  MATH  Google Scholar 

  10. Altenbach H., Eremeyev V.A.: On the bending of viscoelastic plates made of polymer foams. Acta Mech. 204(3–4), 137–154 (2009)

    Article  MATH  Google Scholar 

  11. Altenbach H., Eremeyev V.A.: On the linear theory of micropolar plates. ZAMM 89(4), 242–256 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Altenbach H., Zhilin P.A.: A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki 11(4), 107–148 (1988)

    MathSciNet  Google Scholar 

  13. Altenbach H., Zhilin P.A.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds) Critical Review of the Theories of Plates and Shells. Lecture Notes in Applied and Computational Mechanics, vol. 16, pp. 1–12. Springer, Berlin (2004)

    Google Scholar 

  14. Altenbach H., Naumenko K., Zhilin P.: A micro-polar theory for binary media with application to phase-transitional flow of fibre suspensions. Contin. Mech. Thermodyn. 15, 539–570 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Altenbach, H., Eremeyev, V.A., Lebedev, L.P., Rendón, L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. (2009). doi:10.1007/s00419-009-0314-1

  16. Ambartsumian S.A.: The theory of transverse bending of plates with asymmetric elasticity. Mech. Compos. Mater. 32(1), 30–38 (1996)

    Article  Google Scholar 

  17. Ambartsumian S.A.: The Micropolar Theory of Plates and Shells (in Russian). NAN Armenii, Yerevan (1999)

    Google Scholar 

  18. Antman S.S.: Global properties of buckled states of plates that can suffer thickness changes. Arch. Ration. Mech. Anal. 110(2), 103–117 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Antman S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer Science Media, New York (2005)

    MATH  Google Scholar 

  20. Ariman T.: On circular micropolar plates. Ingenieur Archiv. 37(3), 156–160 (1968)

    Article  MATH  Google Scholar 

  21. Başar Y.: A consistent theory of geometrically non-linear shells with an independent rotation vector. Int. J. Solids Struct. 23(10), 1401–1415 (1987)

    Article  MATH  Google Scholar 

  22. Badur J., Pietraszkiewicz W.: On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained micro-rotations. In: Pietraszkiewicz, W. (eds) Finite Rotations in Structural Mechanics, pp. 19–32. Springer, Wien (1986)

    Google Scholar 

  23. Becker M., Lippmann H.: Plane plastic flow of granular model material. Experimental setup and results. Ingenieur Archiv. 29(6), 829–846 (1977)

    Google Scholar 

  24. Besdo D.: Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums. Acta Mech. 20, 105–131 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bhattacharya K., James R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47(3), 531–576 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bîrsan M.: On a thermodynamic theory of porous Cosserat elastic shells. J. Thermal Stress. 29(9), 879–899 (2006)

    Article  Google Scholar 

  27. Bîrsan M.: On the theory of elastic shells made from a material with voids. Int. J. Solids Struct. 43(10), 3106–3123 (2006)

    Article  Google Scholar 

  28. Bîrsan M.: On Saint-Venant’s principle in the theory of Cosserat elastic shells. Int. J. Eng. Sci. 45(2–8), 187–198 (2007)

    Article  Google Scholar 

  29. Bîrsan M.: Inequalities of Korn’s type and existence results in the theory of Cosserat elastic shells. J. Elast. 90(3), 227–239 (2008)

    Article  MATH  Google Scholar 

  30. Bîrsan M.: On Saint-Venant’s problem for anisotropic, inhomogeneous, cylindrical Cosserat elastic shells. Int. J. Eng. Sci. 47(1), 21–38 (2009)

    Article  Google Scholar 

  31. Bîrsan M.: Thermal stresses in cylindrical Cosserat elastic shells. Eur. J. Mech. A Solids 28(1), 94–101 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bogdanova-Bontcheva N., Lippmann H.: Rotationenssymmetrisches ebenes Fließen eines granularen Modellmaterials. Acta Mech. 21(1–2), 93–113 (1975)

    Article  Google Scholar 

  33. Boschi E.: Lamb and Love wave-propagation in an infinite micropolar elastic plate. Ann. Geofisica 26(2–3), 341–355 (1973)

    Google Scholar 

  34. Capriz G.: Continua with Microstructure. Springer, New York (1989)

    MATH  Google Scholar 

  35. Capriz G., Giovine P., Mariano P.M. (eds): Mathematical Models of Granular Matter. Lecture Notes in Mathematics. Springer, Berlin (2008)

    Google Scholar 

  36. Chambon R., Caillerie D., Matsuchima T.: Plastic continuum with micro structure, local second gradient theories for geomaterials: localization studies. Int. J. Solids Struct. 38(46–47), 8503–8527 (2001)

    Article  MATH  Google Scholar 

  37. Chełmiński K., Neff P.: A note on approximation of Prandtl–Reuss plasticity through Cosserat plasticity. Q. Appl. Math. 66(2), 351–357 (2008)

    MATH  Google Scholar 

  38. Chełmiński K., Neff P.: Hloc(1)-stress and strain regularity in Cosserat plasticity. ZAMM 89, 257–266 (2009)

    Article  MATH  Google Scholar 

  39. Chinosi C., Della Croce L., Scapolla T.: Hierarchic finite elements for thin Naghdi shell model. Int. J. Solids Struct. 35(16), 1863–1880 (1998)

    Article  MATH  Google Scholar 

  40. Chowdhur K.L., Glockner P.G.: Bending of an annular elastic Cosserat plate. Bulletin de l’Academie Polonaise des Sciences Serie des Sciences Techniques 21(3), 211–218 (1973)

    Google Scholar 

  41. Chróścielewski J.: Rodzina elementów skończonych klasy C 0 w nieliniowej sześcioparametrowej teorii powłok. Zesz Nauk Politechniki Gdańskiej LIII(540), 1–291 (1996)

    Google Scholar 

  42. Chróścielewski J., Makowski J., Stumpf H.: Finite element analysis of smooth, folded and multi-shell structures. Comput. Methods Appl. Mech. Eng. 141, 1–46 (1997)

    Article  MATH  Google Scholar 

  43. Chróścielewski J., Makowski J., Pietraszkiewicz W.: Non-linear dynamics of flexible shell structures. Comp. Assisted Mech. Eng. Sci. 9, 341–357 (2002)

    MATH  Google Scholar 

  44. Chró ścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statyka i dynamika powłok wielopłatowych. Nieliniowa teoria i metoda elementów skończonych. Wydawnictwo IPPT PAN, Warszawa (2004)

  45. Ciarlet P.: Mathematical Elasticity, vol. II. Theory of Plates. Elsevier, Amsterdam (1997)

    Google Scholar 

  46. Ciarlet P.: Mathematical Elasticity, vol. III. Theory of Shells. Elsevier, Amsterdam (2000)

    Google Scholar 

  47. Cielecka I., Woźniak M., Woźniak C.: Elastodynamic behaviour of honeycomb cellular media. J. Elast. 60, 1–17 (2000)

    Article  MATH  Google Scholar 

  48. Cohen H., Thomas R.S.D.: Transient waves in inhomogeneous isotropic elastic plates. Acta Mech. 53(3–4), 141–161 (1984)

    Article  MATH  Google Scholar 

  49. Cohen H., Thomas R.S.D.: Transient waves in inhomogeneous anisotropic elastic plates. Acta Mech. 58(1–2), 41–57 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  50. Cohen H., Wang C.C.: A mathematical analysis of the simplest direct models for rods and shells. Arch. Ration. Mech. Anal. 108(1), 35–81 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  51. Coleman B.D., Feinberg M., Serrin J. (eds): Analysis and Thermodynamics—A Collection of Papers Dedicated to W. Noll. Springer, Berlin (1987)

    Google Scholar 

  52. Constanda C.: Complex variable treatment of bending of micropolar plates. Int. J. Eng. Sci. 15(11), 661–669 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  53. Cosserat E., Cosserat F.: Sur la théorie de l’elasticité. Ann. Toulouse 10, 1–116 (1896)

    MathSciNet  Google Scholar 

  54. Cosserat E., Cosserat F.: Théorie des corps déformables. Herman et Fils, Paris (1909)

    Google Scholar 

  55. Cramer H., Findeiss R., Steinl G., Wunderlich W.: An approach to the adaptive finite element analysis in associated and non-associated plasticity considering localization phenomena. Comput. Methods Appl. Mech. Eng. 176(1–4), 187–202 (1999)

    Article  MATH  Google Scholar 

  56. DeBorst R.: Numerical modeling of bifurcation and localization in cohesive-frictional materials. Pure Appl. Geophys. 137(4), 367–390 (1991)

    Article  Google Scholar 

  57. DeBorst R.: A generalization of J2-flow theory for polar continua. Comput. Methods Appl. Mech. Eng. 103(3), 347–362 (1993)

    Article  Google Scholar 

  58. DeSilva C.N., Tsai P.J.: A general theory of directed surfaces. Acta Mech. 18(1–2), 89–101 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  59. Diebels S.: A micropolar theory of porous media: constitutive modelling. Transp. Porous Media 34, 193–208 (1999)

    Article  Google Scholar 

  60. Diebels S.: A macroscopic description of the quasi-static behavior of granular materials based on the theory of porous media. Granul. Matter 2, 143–152 (2000)

    Article  Google Scholar 

  61. Diebels S.: Micropolar mixture models on the basis of the theory of porous media. In: Ehlers, W., Bluhm, J. (eds) Porous Media: Theory, Experiments and Numerical Applications, pp. 121–145. Springer, Berlin (2002)

    Google Scholar 

  62. Diebels S., Steeb H.: Stress and couple stress in foams. Comput. Mater. Sci. 28, 714–722 (2003)

    Article  Google Scholar 

  63. Diepolder W., Mannl V., Lippmann H.: The Cosserat continuum, a model for grain rotations in metals. Int. J. Plasticity 7(4), 313–328 (2001)

    Article  Google Scholar 

  64. Dietsche A., Willam K.: Boundary effects in elasto-plastic Cosserat continua. Int. J. Solids Struct. 34(7), 877–893 (1997)

    Article  MATH  Google Scholar 

  65. Dietsche A., Steinmann P., Willam K.: Micropolar elastoplasticity and its role in localization. Int. J. Plasticity 9(7), 813–831 (1993)

    Article  MATH  Google Scholar 

  66. Dillard T., Forest S., Ienny P.: Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A-Solids 25(3), 526–549 (2006)

    Article  MATH  Google Scholar 

  67. Dłużevski P.H.: Finite deformations of polar elastic media. Int. J. Solids Struct. 30, 2277–2285 (1993)

    Article  Google Scholar 

  68. Dyszlewicz J.: Micropolar Theory of Elasticity. Springer, Berlin (2004)

    MATH  Google Scholar 

  69. Ehlers W.: Theoretical and numerical modelling of granular liquid-saturated elasto-plastic porous media. ZAMM 77(Suppl. 2), S401–S404 (1997)

    MATH  Google Scholar 

  70. Ehlers W.: On liquid-saturated and empty granular elasto-plastic solid materials accounting for micropolar rotations. In: Bruhns, O.T., Stein, E. (eds) IUTAM Symposium on Micro- and Macrostructural Aspects of Thermoplasticity, pp. 271–280. Kluwer, Dordrecht (1998)

    Google Scholar 

  71. Ehlers W., Volk W.: On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mech. Cohesive-Frictional Mater. 2(4), 301–320 (1997)

    Article  Google Scholar 

  72. Ehlers W., Ramm E., Diebels S., d’Addetta G.D.A.: From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  73. Erbay H.A.: An asymptotic theory of thin micropolar plates. Int. J. Eng. Sci. 38(13), 1497–1516 (2000)

    Article  MathSciNet  Google Scholar 

  74. Eremeyev V.A.: Acceleration waves in micropolar elastic media. Doklady Phys. 50(4), 204–206 (2005)

    Article  Google Scholar 

  75. Eremeyev V.A.: Nonlinear micropolar shells: theory and applications. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications, pp. 11–18. Taylor & Francis, London (2005)

    Google Scholar 

  76. Eremeyev V.A., Pietraszkiewicz W.: The non-linear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  77. Eremeyev V.A., Pietraszkiewicz W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  78. Eremeyev V.A., Pietraszkiewicz W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)

    MathSciNet  Google Scholar 

  79. Eremeyev V.A., Zubov L.M.: On the stability of elastic bodies with couple stresses (in Russian). Mech. Solids 3, 181–190 (1994)

    Google Scholar 

  80. Eremeyev V.A., Zubov L.M.: On constitutive inequalities in nonlinear theory of elastic shells. ZAMM 87(2), 94–101 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  81. Eremeyev V.A., Zubov L.M.: Mechanics of Elastic Shells (in Russian). Nauka, Moscow (2008)

    Google Scholar 

  82. Ericksen J.L.: Wave propagation in thin elastic shells. J. Elast. 43(3), 167–178 (1971)

    MATH  MathSciNet  Google Scholar 

  83. Ericksen J.L.: The simplest problems for elastic Cosserat surfaces. J. Elast. 2(2), 101–107 (1972)

    Article  MathSciNet  Google Scholar 

  84. Ericksen J.L.: Symmetry transformations for thin elastic shells. Arch. Ration. Mech. Anal. 47, 1–14 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  85. Ericksen J.L.: Apparent symmetry of certain thin elastic shells. J. Mećanique 12, 12–18 (1973)

    MathSciNet  Google Scholar 

  86. Ericksen J.L.: Plane infinitesimal waves in homogeneous elastic plates. J. Elast. 3(3), 161–167 (1973)

    Article  MathSciNet  Google Scholar 

  87. Ericksen J.L.: Simpler problems for elastic Cosserat surfaces. J. Elast. 7(1), 1–11 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  88. Ericksen J.L.: Introduction to the Thermodynamics of Solids, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  89. Ericksen J.L., Truesdell C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  90. Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(6), 909–923 (1966)

    MATH  MathSciNet  Google Scholar 

  91. Eringen A.C.: Theory of micropolar fluids. J. Math. Mech. 16(1), 1–18 (1966)

    MathSciNet  Google Scholar 

  92. Eringen A.C.: Linear theory of micropolar viscoelasticity. Int. J. Eng. Sci. 5(2), 191–204 (1967)

    Article  MATH  Google Scholar 

  93. Eringen A.C.: Theory of micropolar plates. ZAMP 18(1), 12–30 (1967)

    Article  MathSciNet  Google Scholar 

  94. Eringen A.C.: A unified continuum theory of liquid crystals. ARI 73–84, 369–374 (1997)

    Google Scholar 

  95. Eringen A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999)

    Google Scholar 

  96. Eringen A.C.: Microcontinuum Field Theory. II. Fluent Media. Springer, New York (2001)

    Google Scholar 

  97. Eringen A.C., Maugin G.A.: Electrodynamics of Continua. Springer, New York (1990)

    Google Scholar 

  98. Erofeev V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)

    Book  Google Scholar 

  99. Etse G., Nieto M.: Cosserat continua-based micro plane modelling. Theory and numerical analysis. Latin Am. Appl. Res. 34(4), 229–240 (2004)

    Google Scholar 

  100. Etse G., Nieto M., Steinmann P.: A micropolar microplane theory. Int. J. Eng. Sci. 41(13–14), 1631–1648 (2003)

    Article  MathSciNet  Google Scholar 

  101. Farshad M., Tabarrok B.: Dualities in analysis of Cosserat plate. Mech. Res. Commun. 3(5), 399–406 (1976)

    Article  MATH  Google Scholar 

  102. Fatemi J., Van Keulen F., Onck P.R.: Generalized continuum theories: application to stress analysis in bone. Meccanica 37(4–5), 385–396 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  103. Forest S.: Modeling slip, kink and smear banding in classical and generalized single crystal plasticity. Acta Mater. 46(9), 3265–3281 (1998)

    Article  Google Scholar 

  104. Forest S., Sedláček R.: Plastic slip distribution in two-phase laminate microstructures: dislocation-based versus generalized continuum approaches. Philos. Mag. 83(2), 245–276 (2003)

    Article  Google Scholar 

  105. Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160(1–2), 71–111 (2003)

    Article  MATH  Google Scholar 

  106. Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43(24), 7224–7245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  107. Forest S., Barbe F., Cailletaud G.: Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37(46–47), 7105–7126 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  108. Forest S., Boubidi P., Sievert R.: Strain localization patterns at a crack tip in generalized single crystal plasticity. Scr. Mater. 44(6), 953–958 (2001)

    Article  Google Scholar 

  109. Fox D.D., Simo J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods Appl. Mech. Eng. 98(3), 329–343 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  110. Fox D.D., Raoult A., Simo J.C.: A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124(2), 157–199 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  111. Friesecke G., James R.D., Mora M.G., Müller S.: Rigorous derivation of nonlinear plate theory and geometric rigidity. C. R. Acad. Sci. Paris Ser. I 334, 173–178 (2002)

    MATH  Google Scholar 

  112. Friesecke G., James R.D., Mora M.G., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. LV, 1461–1506 (2002)

    Article  Google Scholar 

  113. Friesecke G., James R.D., Mora M.G., Müller S.: The Föppl–von Karman plate theory as a low energy Gamma limit of nonlinear elasticity. C. R. Acad. Sci. Paris Ser. I 335, 201–206 (2002)

    MATH  Google Scholar 

  114. Friesecke G., James R.D., Mora M.G., Müller S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Acad. Sci. Paris Ser. I 336, 697–702 (2003)

    MATH  Google Scholar 

  115. Gauthier R.D., Jahsman W.E.: Quest for micropolar elastic-constants. Trans. ASME J. Appl. Mech. 42(2), 369–374 (1975)

    Google Scholar 

  116. Gauthier R.D., Jahsman W.E.: Quest for micropolar elastic-constants. 2. Arch. Mech. 33(5), 717–737 (1981)

    MATH  Google Scholar 

  117. Georgiadis H.G., Velgaki E.G.: High-frequency Rayleigh waves in materials with micro-structure and couple–stress effects. Int. J. Solids Struct. 40(10), 2501–2520 (2003)

    Article  MATH  Google Scholar 

  118. Gevorkyan G.A.: The basic equations of flexible plates for a medium of Cosserat. Int. Appl. Mech. 3(11), 41–45 (1967)

    Google Scholar 

  119. Glockner P.G., Malcolm D.J.: Cosserat surface—model for idealized sandwich shells. ZAMM 54(4), T78 (1974)

    Google Scholar 

  120. Grammenoudis P., Tsakmakis C.: Hardening rules for finite deformation micropolar plasticity: restrictions imposed by the second law of thermodynamics and the postulate of Il’iushin. Contin. Mech. Thermodyn. 13(5), 325–363 (2001)

    MATH  MathSciNet  Google Scholar 

  121. Grammenoudis P., Tsakmakis C.: Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects. Int. J. Numer. Methods Eng. 62(12), 1691–1720 (2005)

    Article  MATH  Google Scholar 

  122. Grammenoudis P., Tsakmakis C.: Predictions of microtorsional experiments by micropolar plasticity. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 461(2053), 189–205 (2005)

    Article  Google Scholar 

  123. Grammenoudis P., Tsakmakis C.: Isotropic hardening in micropolar plasticity. Arch. Appl. Mech. 79(4), 323–334 (2009)

    Article  MATH  Google Scholar 

  124. Green A.E., Naghdi P.M.: Linear theory of an elastic Cosserat plate. Proc. Camb. Philos. Soc. Math. Phys. Sci. 63(2), 537–550 (1967)

    Article  Google Scholar 

  125. Green A.E., Naghdi P.M.: Micropolar and director theories of plates. Q. J. Mech. Appl. Math. 20, 183–199 (1967)

    Article  MATH  Google Scholar 

  126. Green A.E., Naghdi P.M.: The linear elastic Cosserat surface and shell theory. Int. J. Solids Struct. 4(6), 585–592 (1968)

    Article  MATH  Google Scholar 

  127. Green A.E., Naghdi P.M.: Non-isothermal theory of rods, plates and shells. Int. J. Solids Struct. 6, 209–244 (1970)

    Article  MATH  Google Scholar 

  128. Green A.E., Naghdi P.M.: On superposed small deformations on a large deformation of an elastic Cosserat surface. J. Elast. 1(1), 1–17 (1971)

    Article  MathSciNet  Google Scholar 

  129. Green A.E., Naghdi P.M.: Derivation of shell theories by direct approach. Trans. ASME J. Appl. Mech. 41(1), 173–176 (1974)

    MATH  MathSciNet  Google Scholar 

  130. Green A.E., Naghdi P.M.: On thermal effects in the theory of shells. Proc. R. Soc. Lond. A 365A, 161–190 (1979)

    MathSciNet  Google Scholar 

  131. Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  132. Green A.E., Naghdi P.M., Wainwright W.L.: A general theory of a Cosserat surface. Arch. Ration. Mech. Anal. 20(4), 287–308 (1965)

    Article  MathSciNet  Google Scholar 

  133. Grekova E., Zhilin P.: Basic equations of Kelvins medium and analogy with ferromagnets. J. Elast. 64, 29–70 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  134. Grigolyuk, E.I., Selezov, I.T.: Nonclassical theories of vibration of beams, plates and shells (in Russian). In: Itogi nauki i tekhniki, Mekhanika tverdogo deformiruemogo tela, vol. 5. VINITI, Moskva (1973)

  135. Grioli G.: Elasticita asimmetrica. Ann. Math. Pura Appl. 50, 389–417 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  136. Grioli G.: Contributo per una formulazione di tipo integrale della meccanica dei continui di Cosserat. Ann. Math. Pura Appl. 111(1), 389–417 (1976)

    Article  MathSciNet  Google Scholar 

  137. Günther W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunschweigschen Wissenschaftlichen Gesellschaft Göttingen 10, 196–213 (1958)

    Google Scholar 

  138. Gürgöze dT.: Thermostatics of an elastic Cosserat plate containing a circular hole. Proc. Camb. Philos. Soc. Math. Phys. Sci. 70(JUL), 169–174 (1971)

    Article  Google Scholar 

  139. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  140. Hamel G.: Elementare Mechanik: ein Lehrbuch enthaltend: eine Begründung der allgemeinen Mechanik, die Mechanik der Systeme starrer Körper, die synthetischen und die Elemente der analytischen Methoden, sowie eine Einführung in die Prinzipien der Mechanik deformierbarer Systeme. Teubner, Leipzig (1912)

  141. Hamel G.: Theoretische Mechanik: eine einheitliche Einführung in die gesamte Mechanik. Springer, Berlin (1949)

    MATH  Google Scholar 

  142. Harris D., Grekova E.F.: A hyperbolic well-posed model for the flow of granular materials. J. Eng. Math. 52(1–3), 107–135 (2005)

    MATH  MathSciNet  Google Scholar 

  143. Herglotz G.: Vorlesungen über Mechanik der Kontinua, Teubner-Archiv zur Mathematik, vol. 3. B.G. Teubner, Leipzig (1985)

    Google Scholar 

  144. Hodges D.H., Atilgan A.R., Danielson D.A.: A geometrically nonlinear theory of elastic plates. Trans. ASME J. Appl. Mech. 60(1), 109–116 (2004)

    Google Scholar 

  145. Huang W.X., Bauer E.: Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Methods Geomech. 27(4), 325–352 (2003)

    Article  MATH  Google Scholar 

  146. Ieşan D.: On the linear theory of micropolar elasticity. Int. J. Eng. Sci. 7(12), 1213–1220 (1969)

    Article  MATH  Google Scholar 

  147. Ieşan D.: Saint-Venant’s Problem. Lecture Notes in Mathematics. Springer, Berlin (1987)

    Google Scholar 

  148. Itou S., Atsumi A.: Effect of couple–stresses on elastic Cosserat plate with loads travelling at uniform velocity along bounding surfaces. Archiwum Mechaniki Stosowanej 22(4), 375–384 (1970)

    MATH  Google Scholar 

  149. Ivanova E.A., Krivtsov A.M., Morozov N.F., Firsova A.D.: Description of crystal packing of particles with torque interaction. Mech. Solids 38(4), 76–88 (2003)

    Google Scholar 

  150. Ivanova E.A., Krivtsov A.M., Morozov N.F., Firsova A.D.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Doklady Phys. 48(8), 455–458 (2003)

    Article  Google Scholar 

  151. Jemielita G.: Rotational representation of a plate made of Grioli–Toupin material. Trans. ASME J. Appl. Mech. 62(2), 414–418 (1995)

    Article  MATH  Google Scholar 

  152. Jog C.S.: Higher-order shell elements based on a Cosserat model, and their use in the topology design of structures. Comput. Methods Appl. Mech. Eng. 193(23–26), 2191–2220 (2004)

    Article  MATH  Google Scholar 

  153. Kafadar C.B., Eringen A.C.: Micropolar media—I. The classical theory. Int. J. Eng. Sci. 9, 271–305 (1971)

    Article  Google Scholar 

  154. Kafadar C.B., Eringen A.C.: Polar field theories. In: Eringen, A.C. (eds) Continuum Physics, vol. IV, pp. 1–75. Academic Press, New York (1976)

    Google Scholar 

  155. Kaplunov J.D., Lippmann H.: Elastic-plastic torsion of a Cosserat-type rod. Acta Mech. 113(1–4), 53–63 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  156. Kayuk Y.F., Zhukovskii A.P.: Theory of plates and shells based on the concept of Cosserat surfaces. Int. Appl. Mech. 17(10), 922–926 (1981)

    Google Scholar 

  157. Keller I.E., Trusov P.V.: Fragmentation of metals at high strains: a mechanism of formation of spatially-modulated vortex structures. J. Appl. Mech. Tech. Phys. 43(2), 320–327 (2002)

    Article  Google Scholar 

  158. Kienzler R.: On consistent plate theories. Arch. Appl. Mech. 72, 229–247 (2002)

    Article  MATH  Google Scholar 

  159. Kienzler, R., Altenbach, H., Ott, I. (eds.): Critical Review of the Theories of Plates and Shells, New Applications. Lecture Notes in Applied and Computational Mechanics, vol. 16. Springer, Berlin (2004)

  160. Kirchhoff G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles Journal für die reine und angewandte Mathematik 40, 51–88 (1850)

    Article  MATH  Google Scholar 

  161. Koiter W.T.: Couple–stresses in the theory of elasticity Pt. I–II. Proc. Koninkl. Neterland Akad. Wetensh B 67, 17–44 (1964)

    MATH  Google Scholar 

  162. Konopińska V., Pietraszkiewicz W.: Exact resultant equilibrium conditions in the non-linear theory of branched and self-intersecting shells. Int. J. Solids Struct. 44(1), 352–369 (2006)

    Article  Google Scholar 

  163. Korman T., Morghem F.T., Baluch M.H.: Bending of micropolar plates. Nuclear Eng. Des. 26(3), 432–439 (1974)

    Article  Google Scholar 

  164. Kotera H., Sawada M., Shima S.: Magnetic Cosserat continuum theory to simulate behavior of magnetic powder during compaction in applied magnetic field. Metals Mater. Korea 4(3), 354–358 (1998)

    Google Scholar 

  165. Kotera H., Sawada M., Shima S.: Cosserat continuum theory to simulate microscopic rotation of magnetic powder in applied magnetic field. Int. J. Mech. Sci. 42(1), 129–145 (2000)

    Article  MATH  Google Scholar 

  166. Kratochvil J., Labbe E., Rey C., Yang S.: On physically motivated mesoscale Cosserat model of shear band formation. Scr. Mater. 41(7), 761–766 (1999)

    Article  Google Scholar 

  167. Kreja, I.: Geometrically non-linear analysis of layered composite plates and shells. Gdaǹsk University of Technology, Gdaǹsk (2007)

  168. Krishnaswamy S., Jin Z.H., Batra R.C.: Stress concentration in an elastic Cosserat plate undergoing extensional deformations. Trans. ASME J. Appl. Mech. 65(1), 66–70 (1998)

    Google Scholar 

  169. Kröner, E. (ed.): Mechanics of generalized continua. In: Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany), 1967, vol. 16. Springer, Berlin (1968)

  170. Kumar R., Deswal S.: Some problems of wave propagation in a micropolar elastic medium with voids. J. Vib. Control 12(8), 849–879 (2006)

    Article  MATH  Google Scholar 

  171. Kumar R., Partap G.: Rayleigh Lamb waves in micropolar isotropic elastic plate. Appl. Math. Mech. 27(8), 1049–1059 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  172. Kumar R., Partap G.: Axisymmetric free vibrations of infinite micropolar thermoelastic plate. Appl. Math. Mech. 28(3), 369–383 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  173. Kurlandz Z.T.: Derivation of linear shell theory from theory of Cosserat medium. Bulletin de l’Academie Polonaise des Sciences Serie des Sciences Techniques 20(10), 789–794 (1972)

    MathSciNet  Google Scholar 

  174. Kurlandz Z.T.: Anisotropic linear Cosserat surface and linear shell theory. Arch. Mech. 25(4), 613–620 (1973)

    Google Scholar 

  175. Lakes R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  176. Lakes R.S.: Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua. Trans. ASME J. Eng. Mater. Technol. 113, 148–155 (1991)

    Article  Google Scholar 

  177. Lakes R.S.: Experimental methods for study of Cosserat elastic solids and other generalized continua. In: Mühlhaus, H. (eds) Continuum Models for Materials with Micro-Structure, pp. 1–22. Wiley, New York (1995)

    Google Scholar 

  178. Larsson R., Diebels S.: A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int. J. Numer. Methods Eng. 69(12), 2485–2512 (2007)

    Article  MathSciNet  Google Scholar 

  179. Larsson R., Zhang Y.: Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics. J. Mech. Phys. Solids 55(4), 819–841 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  180. Levinson M.: An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Comm. 7(6), 343–350 (1980)

    Article  MATH  Google Scholar 

  181. Li L., Xie S.S.: Finite element method for linear micropolar elasticity and numerical study of some scale effects phenomena in MEMS. Int. J. Mech. Sci. 46(11), 1571–1587 (2004)

    Article  MATH  Google Scholar 

  182. Libai A., Simmonds J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech. 23, 271–371 (1983)

    Article  MATH  Google Scholar 

  183. Libai A., Simmonds J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  184. Lippmann H.: Eine Cosserat-Theorie des plastischen Fließens. Acta Mech. 8(3–4), 93–113 (1969)

    Google Scholar 

  185. Lippmann H.: Plasticity in rock mechanics. Int. J. Mech. Sci. 13(4), 291–297 (1971)

    Article  Google Scholar 

  186. Lippmann H.: Plasticity in rock mechanics. Mech. Res. Commun. 11(3), 177–184 (1984)

    Article  MATH  Google Scholar 

  187. Lippmann H.: Velocity field equations and strain localization. Int. J. Solids Struct. 22(12), 1399–1409 (1986)

    Article  MATH  Google Scholar 

  188. Lippmann H.: Cosserat plasticity and plastic spin. Appl. Mech. Rev. 48(11), 753–762 (1995)

    Article  Google Scholar 

  189. Lubowiecka I., Chróścielewski J.: On dynamics of flexible branched shell structures undergoing large overall motion using finite elements. Comput. Struct. 80, 891–898 (2002)

    Article  Google Scholar 

  190. Maier T.: Comparison of non-local and polar modelling of softening in hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 28(3), 251–268 (2004)

    Article  MATH  Google Scholar 

  191. Makowski, J., Pietraszkiewicz, W.: Thermomechanics of shells with singular curves. Zesz. Nauk. No 528/1487/2002, Gdańsk (2002)

  192. Makowski J., Stumpf H.: Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation. Int. J. Solids Struct. 26, 353–368 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  193. Makowski J., Pietraszkiewicz W., Stumpf H.: Jump conditions in the nonlinear theory of thin irregular shells. J. Elast. 54, 1–26 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  194. Malcolm D.J., Glockner P.G.: Cosserat surface and sandwich shell equilibrium. Trans. ASCE J. Eng. Mech. Div. 98(EM5), 1075–1086 (1972)

    Google Scholar 

  195. Malcolm D.J., Glockner P.G.: Nonlinear sandwich shell and Cosserat surface theory. Trans. ASCE J. Eng. Mech. Div. 98(EM5), 1183–1203 (1972)

    Google Scholar 

  196. Manzari M.T.: Application of micropolar plasticity to post failure analysis in geomechanics. Int. J. Numer. Anal. Methods Geomech. 28(10), 1011–1032 (2004)

    Article  MATH  Google Scholar 

  197. Matsushima T., Saomoto H., Tsubokawa Y., Yamada Y.: Grain rotation versus continuum rotation during shear deformation of granular assembly. Soils Found. 43(4), 95–106 (2003)

    Google Scholar 

  198. Maugin G.A.: Acceleration waves in simple and linear viscoelastic micropolar materials. Int. J. Eng. Sci. 12, 143–157 (1974)

    Article  MATH  Google Scholar 

  199. Maugin G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, Oxford (1988)

    MATH  Google Scholar 

  200. Maugin G.A.: On the structure of the theory of polar elasticity. Philos. Trans. R. Soc. Lond. A 356, 1367–1395 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  201. Migoun, N.P., Prokhorenko, P.P.: Hydrodynamics and Heattransfer in Gradient Flows of Microstructured Fluids (in Russian). Nauka i Technika, Minsk (1984)

  202. Mindlin R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. Trans. ASME J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  203. Mindlin R.D., Tiersten H.F.: Effects of couple–stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  204. Mora R., Waas A.M.: Measurement of the Cosserat constant of circular-cell polycarbonate honeycomb. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 80(7), 1699–1713 (2000)

    Google Scholar 

  205. Mori K., Shiomi M., Osakada K.: Inclusion of microscopic rotation of powder particles during compaction in finite element method using Cosserat continuum theory. Int. J. Numer. Methods Eng. 42(5), 847–856 (1998)

    Article  MATH  Google Scholar 

  206. Murdoch A.I., Cohen H.: Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal. 72(1), 61–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  207. Murdoch A.I., Cohen H.: Symmetry considerations for material surfaces. Addendum. Arch. Ration. Mech. Anal. 76(4), 393–400 (1979)

    MathSciNet  Google Scholar 

  208. Naghdi P.: The theory of plates and shells. In: Flügge, S. (eds) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Heidelberg (1972)

    Google Scholar 

  209. Naghdi P.: On the formulation of contact problems of shells and plates. J. Elast. 5(3–4), 379–398 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  210. Naghdi P., Rubin M.B.: Restrictions on nonlinear constitutive equations for elastic shells. J. Elast. 39, 133–163 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  211. Naghdi P., Trapp J.A.: A uniqueness theorem in the theory of Cosserat surface. J. Elast. 2(1), 9–20 (1972)

    Article  MathSciNet  Google Scholar 

  212. Naghdi P.M., Srinivasa A.R.: A dynamical theory of structured solids. 1. Basic developments. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 345(1677), 425–458 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  213. Nardinocchi R., Podio-Guidugli P.: The equations of Reissner–Mindlin plates obtained by the method of internal constraints. Meccanica 29, 143–157 (1994)

    Article  MATH  Google Scholar 

  214. Naue G.: Kontinuumsbegriff und Erhaltungssätze in der Mechanik seit Leonard Euler. Tech. Mech. 5(4), 62–66 (1984)

    Google Scholar 

  215. Nazarov S.A.: Asymptotic behavior of the solution of an elliptic boundary value problem in a thin domain. J. Math. Sci. 64(6), 1351–1362 (1993)

    Article  Google Scholar 

  216. Neff P.: A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin. Mech. Thermodyn. 16(6), 577–628 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  217. Neff P.: The Γ-limit of a finite strain Cosserat model for asymptotically thin domains and a consequence for the Cosserat couple modulus. Proc. Appl. Math. Mech. 5(1), 629–630 (2005)

    Article  Google Scholar 

  218. Neff P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006)

    Article  MathSciNet  Google Scholar 

  219. Neff P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. ZAMM 86(11), 892–912 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  220. Neff P.: A geometrically exact planar Cosserat shell-model with microstructure: existence of minimizers for zero Cosserat couple modulus. Math. Models Methods Appl. Sci. 17(3), 363–392 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  221. Neff P., Chełmiński K.: Infinitesimal elastic-plastic Cosserat micropolar theory. Modelling and global existence in the rate independent case. Proc. R. Soc. Edinb. A Math. 135, 1017–1039 (2005)

    Article  MATH  Google Scholar 

  222. Neff P., Chełmiński K.: A geometrically exact Cosserat shell-model for defective elastic crystals. Justification via Γ-convergence. Interfaces Free Boundaries 9, 455–492 (2007)

    Article  MATH  Google Scholar 

  223. Neff P., Chełmiński K.: Well-posedness of dynamic Cosserat plasticity. Appl. Math. Optim. 56(1), 19–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  224. Neff P., Jeong J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. ZAMM 89(2), 107–122 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  225. Neff P., Knees D.: Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal. 40(1), 21–43 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  226. Neff P., Chełmiński K., Mueller W., Wieners C.: A numerical solution method for an infinitesimal elasto-plastic Cosserat model. Math. Models Methods Appl. Sci. 17(8), 1211–1239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  227. Nicotra V., Podio-Guidugli P., Tiero A.: Exact equilibrium solutions for linearly elastic plate-like bodies. J. Elast. 56, 231–245 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  228. Nikitin E., Zubov L.M.: Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. J. Elast. 51, 1–22 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  229. Nistor I.: Variational principles for Cosserat bodies. Int. J. Non-Linear Mech. 37, 565–569 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  230. Noor A.K.: Bibliography of monographs and surveys on shells. Appl. Mech. Rev. 43, 223–234 (1990)

    Google Scholar 

  231. Noor A.K.: List of books, monographs, and survey papers on shells. In: Noor, A.K., Belytschko, T., Simo, J.C. (eds) Analytical and Computational Models of Shells, CED, vol. 3, pp. vii–xxxiv. ASME, New York (2004)

    Google Scholar 

  232. Nowacki W.: Theory of Asymmetric Elasticity. Pergamon-Press, Oxford (1986)

    MATH  Google Scholar 

  233. Nowacki W., Nowacki W.K.: Propagation of monochromatic waves in an infinite micropolar elastic plate. Bulletin de l’Academie Polonaise des Sciences Serie des Sciences Techniques 17(1), 45–53 (1969)

    MATH  MathSciNet  Google Scholar 

  234. Pal’mov V.A.: Fundamental equations of the theory of asymmetric elasticity. J. Appl. Mech. Math. 28(3), 496–505 (1964)

    Article  MathSciNet  Google Scholar 

  235. Pal’mov V.A.: The plane problem in the theory of nonsymmetrical elasticity. J. Appl. Mech. Math. 28(6), 1341–1345 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  236. Pal’mov V.A.: Contribution to Cosserat’s theory of plates (in Russian). Trudy LPI 386, 3–8 (1982)

    Google Scholar 

  237. Palmow W.A., Altenbach H.: Über eine Cosseratsche Theorie für elastische Platten. Technische Mechanik 3(3), 5–9 (1982)

    Google Scholar 

  238. Papanastasiou P.: Localization of deformation and failure around elliptical perforations based on a polar continuum. Comput. Mech. 26(4), 352–361 (2000)

    Article  MATH  Google Scholar 

  239. Park H.C., Lakes R.S.: Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J. Biomech. 19, 385–397 (1986)

    Article  Google Scholar 

  240. Pietraszkiewicz W.: Consistent second approximation to the elastic strain energy of a shell. ZAMM 59, 206–208 (1979)

    MathSciNet  Google Scholar 

  241. Pietraszkiewicz, W.: Finite Rotations and Langrangian Description in the Non-linear Theory of Shells. Polish Scientific Publishers, Warszawa-Poznań (1979)

  242. Pietraszkiewicz W.: Addendum to: Bibliography of monographs and surveys on shells. Appl. Mech. Rev. 45, 249–250 (1992)

    Article  MathSciNet  Google Scholar 

  243. Pietraszkiewicz W.: Teorie nieliniowe powłok. In: Woźniak, C. (eds) Mechanika sprȩżystych płyt i powłok, pp. 424–497. PWN, Warszawa (2001)

    Google Scholar 

  244. Pietraszkiewicz W., Badur J.: Finite rotations in the description of continuum deformation. Int. J. Eng. Sci. 21, 1097–1115 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  245. Pietraszkiewicz W., Eremeyev V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)

    Article  MathSciNet  Google Scholar 

  246. Pietraszkiewicz W., Eremeyev V.A.: On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int. J. Solids Struct. 46(11–12), 2477–2480 (2009)

    Article  MathSciNet  Google Scholar 

  247. Pietraszkiewicz W., Chróścielewski J., Makowski J.: On dynamically and kinematically exact theory of shells. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications, pp. 163–167. Taylor & Francis, London (2005)

    Google Scholar 

  248. Pietraszkiewicz W., Eremeyev V.A., Konopińska V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM 87(2), 150–159 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  249. Podio-Guidugli P.: An exact derivation of the thin plate equation. J. Elast. 22, 121–133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  250. Pompei A., Rigano M.A.: On the bending of micropolar viscoelastic plates. Int. J. Eng. Sci. 44(18–19), 1324–1333 (2006)

    Article  MathSciNet  Google Scholar 

  251. Provan J.W., Koeller R.C.: On the theory of elastic plates. Int. J. Solids Struct. 6(7), 933–950 (1970)

    Article  MATH  Google Scholar 

  252. Ramezani S., Naghdabadi R.: Energy pairs in the micropolar continuum. Int. J. Solids Struct. 44, 4810–4818 (2007)

    Article  MATH  Google Scholar 

  253. Ramsey H.: Comparison of buckling deformations in compressed elastic Cosserat plates with three-dimensional plates. Int. J. Solids Struct. 22(3), 257–266 (1986)

    Article  MATH  Google Scholar 

  254. Ramsey H.: Axisymmetrical buckling of a cylindrical elastic Cosserat shell under axial-compression. Q. J. Mech. Appl. Math. 40(3), 415–429 (1987)

    Article  MATH  Google Scholar 

  255. Reddy J.N.: A simple higher-order theory for laminated composite plates. Trans. ASME J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  256. Reissner E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–194 (1944)

    MATH  MathSciNet  Google Scholar 

  257. Reissner E.: The effect of transverse shear deformation on the bending of elastic plates. Trans. ASME J. Appl. Mech. 12(11), A69–A77 (1945)

    MathSciNet  Google Scholar 

  258. Reissner E.: On bending of elastic plates. Q. Appl. Math. 5, 55–68 (1947)

    MATH  MathSciNet  Google Scholar 

  259. Reissner E.: A note on pure bending and flexure in plane stress including the effect of moment stresses. Arch. Mech. 28(6), 633–642 (1970)

    Google Scholar 

  260. Reissner E.: On sandwich-type plates with cores capable of supporting moment stresses. Acta Mech. 14(1), 43–51 (1972)

    Article  MATH  Google Scholar 

  261. Reissner E.: On kinematics and statics of finite-strain force and moment stress elasticity. Stud. Appl. Math. 52, 93–101 (1973)

    Google Scholar 

  262. Reissner E.: Note on the equations of finite-strain force and moment stress elasticity. Stud. Appl. Math. 54, 1–8 (1975)

    MATH  MathSciNet  Google Scholar 

  263. Reissner E.: A note on generating generalized two-dimensional plate and shell theories. ZAMP 28, 633–642 (1977)

    Article  MATH  Google Scholar 

  264. Reissner E.: Reflection on the theory of elastic plates. Appl. Mech. Rev. 38(11), 1453–1464 (1985)

    Article  Google Scholar 

  265. Reissner E.: A further note on the equations of finite-strain force and moment stress elasticity. ZAMP 38, 665–673 (1987)

    Article  MATH  Google Scholar 

  266. Ristinmaa M., Vecchi M.: Use of couple–stress theory in elasto-plasticity. Comput. Methods Appl. Mech. Eng. 136(3–4), 205–224 (1996)

    Article  MATH  Google Scholar 

  267. Rothert H.: Lineare konstitutive Gleiehungen der viskoelastischen Cosseratfläche. ZAMM 55, 647–656 (1975)

    Article  MATH  Google Scholar 

  268. Rothert H.: Lösungsmöglichkeiten des Umkehrproblems viskoelastischer Cosseratfächen. ZAMM 57, 429–437 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  269. Rubin M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  270. Rubin M.B.: Restrictions on linear constitutive equations for a rigid heat conducting Cosserat shell. Int. J. Solids Struct. 41(24–25), 7009–7033 (2004)

    Article  MATH  Google Scholar 

  271. Rubin M.B.: Numerical solution of axisymmetric nonlinear elastic problems including shells using the theory of a Cosserat point. Comput. Mech. 36(4), 266–288 (2005)

    Article  MATH  Google Scholar 

  272. Rubin M.B., Benveniste Y.: A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52(5), 1023–1052 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  273. Sansour C.: A theory of the elasto-viscoplastic Cosserat continuum. Arch. Mech. 50, 577–597 (1998)

    MATH  Google Scholar 

  274. Sansour C., Bednarczyk H.: The Cosserat surface as a shell-model, theory and finite-element formulation. Comput. Methods Appl. Mech. Eng. 120(1–2), 1–32 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  275. Sargsyan S.O.: On some interior and boundary effects in thin plates based on the asymmetric theory of elasticity. In: Kienzler, R., Altenbach, H., Ott, I. (eds) Theories of Plates and Shells: Critical Review and New Applications, pp. 201–210. Springer, Berlin (2005)

    Google Scholar 

  276. Sargsyan S.O.: Boundary-value problems of the asymmetric theory of elasticity for thin plates. J. Appl. Math. Mech. 72(1), 77–86 (2008)

    Article  MathSciNet  Google Scholar 

  277. Sawczuk A.: On the yielding of Cosserat continua. Arch. Mech. 19, 471–480 (1967)

    MATH  Google Scholar 

  278. Schaefer H.: Das Cosserat-Kontinuum. ZAMM 47(8), 485–498 (1967)

    Article  MATH  Google Scholar 

  279. Schiavone P.: On existence theorems in the theory of extensional motions of thin micropolar plates. Int. J. Eng. Sci. 27(9), 1129–1133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  280. Schiavone P.: Uniqueness in dynamic problems of thin micropolar plates. Appl. Math. Lett. 4(2), 81–83 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  281. Schiavone P., Constanda C.: Existence theorems in the theory of bending of micropolar plates. Int. J. Eng. Sci. 27(4), 463–468 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  282. Sedláček R., Forest S.: Non-local plasticity at microscale: a dislocation-based and a Cosserat model. Phys. Status Solidi B Basic Res. 221(2), 583–596 (2000)

    Article  Google Scholar 

  283. Sekine K.: Cosserat theory of crystal plasticity with application to analysis of lattice rotations under constrained deformation. J. Japan Inst. Metals 41(9), 874–882 (1977)

    Google Scholar 

  284. Sharbati E., Naghdabadi R.: Computational aspects of the Cosserat finite element analysis of localization phenomena. Comput. Mater. Sci. 38(2), 303–315 (2006)

    Article  Google Scholar 

  285. Shkutin L.I.: Nonlinear models of deformable momental continua (in Russian). J. Appl. Mech. Tech. Phys. 6, 111–117 (1980)

    MathSciNet  Google Scholar 

  286. Shkutin L.I.: Mechanics of Deformations of Flexible Bodies (in Russian). Nauka, Novosibirsk (1985)

    Google Scholar 

  287. Sievert R., Forest S., Trostel R.: Finite deformation Cosserat-type modelling of dissipative solids and its application to crystal plasticity. J. Phys. IV 8(P8), 357–364 (1998)

    Google Scholar 

  288. Simmonds J.G.: The thermodynamical theory of shells: descent from 3-dimensions without thickness expansions. In: Axelrad, E.K., Emmerling, F.A. (eds) Flexible Shells, Theory and Applications, pp. 1–11. Springer, Berlin (1984)

    Google Scholar 

  289. Simmonds, J.G.: Some comments on the status of shell theory at the end of the 20th century: complaints and correctives. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 38th, and AIAA/ASME/AHS Adaptive Structures Forum, Kissimmee, FL, April 7–10, 1997. Collection of Technical Papers, Pt. 3 (A97-24112 05-39), AIAA, pp. 1912–1921 (1997)

  290. Simmonds J.G., Danielson D.A.: Nonlinear shell theory with finite rotation and stress-function vectors. Trans. ASME J. Appl. Mech. 39(4), 1085–1090 (1972)

    MATH  Google Scholar 

  291. van der Sluis O., Vosbeek P.H.J., Schreurs P.J.G., Meijer H.E.H.: Homogenization of heterogeneous polymers. Int. J. Solids Struct. 36(21), 3193–3214 (1999)

    Article  MATH  Google Scholar 

  292. Steinmann P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  293. Steinmann P.: Theorie endlicher mikropolarer Elasto-Plasticität. ZAMM 74(4), T245–T247 (1994)

    Google Scholar 

  294. Steinmann P., Stein E.: A uniform treatment of variational principles for two types of micropolar continua. Acta Mech. 121, 215–232 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  295. Stojanović, R. (eds): Mechanics of Polar Continua, Theory and Applications. Springer, Wien (1969)

    Google Scholar 

  296. Stojanović R.: Nonlinear micropolar elasticity. In: Nowacki, W., Olszak, W. (eds) Micropolar Elasticity, pp. 73–103. Springer, Wien (1972)

    Google Scholar 

  297. Suiker A.S.J., DeBorst R., Chang C.S.: Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory. Acta Mech. 149, 161–180 (2001)

    Article  MATH  Google Scholar 

  298. Swift H.W.: Length changes in metals under torsional overstrain. Engineering 163, 253–257 (1947)

    Google Scholar 

  299. Tejchman J., Bauer E.: Modeling of a cyclic plane strain compression-extension test in granular bodies within a polar hypoplasticity. Granul. Matter 7, 227–242 (2005)

    Article  MATH  Google Scholar 

  300. Tejchman J., Wu W.: Numerical study on sand and steel interfaces. Mech. Res. Commun. 21(2), 109–119 (1994)

    Article  MATH  Google Scholar 

  301. Tejchman J., Wu W.: Experimental and numerical study of sand-steel interfaces. Int. J. Numer. Anal. Methods Geomech. 19(8), 513–536 (1995)

    Article  Google Scholar 

  302. Timoshenko S.P., Woinowsky-Krieger S.: Theory of Plates and Shells. McGraw Hill, New York (1985)

    Google Scholar 

  303. Tomar S.K.: Wave propagation in a micropolar elastic plate with voids. J. Vib. Control 11(6), 849–863 (2005)

    Article  MATH  Google Scholar 

  304. Toupin R.A.: Elastic materials with couple–stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  305. Toupin R.A.: Theories of elasticity with couple–stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  306. Trovalusci P., Masiani R.: Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 40(5), 1281–1297 (2003)

    Article  MATH  Google Scholar 

  307. Truesdell C.: Die Entwicklung des Drallsatzes. ZAMM 44(4/5), 149–158 (1964)

    MATH  MathSciNet  Google Scholar 

  308. Truesdell C., Noll W.: The nonlinear field theories of mechanics. In: Flügge, S. (eds) Handbuch der Physik, vol. III/3, pp. 1–602. Springer, Berlin (1965)

    Google Scholar 

  309. Truesdell C., Toupin R.: The classical field theories. In: Flügge, S. (eds) Handbuch der Physik, vol. III/1, pp. 226–793. Springer, Berlin (1960)

    Google Scholar 

  310. Truong H.P.Q., Lippmann H.: Plastic spin and evolution of an anisotropic yield condition. Key Eng. Mater. 180, 13–22 (2000)

    Article  Google Scholar 

  311. Truong H.P.Q., Lippmann H.: Plastic spin and evolution of an anisotropic yield condition. Int. J. Mech. Sci. 43(9), 1969–1983 (2001)

    Article  MATH  Google Scholar 

  312. Truong H.P.Q., Lippmann H.: Plastic spin and evolution of an anisotropic yield condition. J. Mech. Phys. Solids 49(1), 2577–2591 (2001)

    Article  MATH  Google Scholar 

  313. Turner J.R., Nicol D.A.C.: The Signorini problem for a Cosserat plate. J. Inst. Math. Appl. 25(2), 133–145 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  314. Walsh S.D.C., Tordesillas A.: A thermomechanical approach to the development of micropolar constitutive models of granular media. Acta Mech. 167, 145–169 (2004)

    Article  MATH  Google Scholar 

  315. Wang C.M., Reddy J.N., Lee K.H.: Shear Deformable Beams and Shells. Elsevier, Amsterdam (2000)

    Google Scholar 

  316. Wang F.Y.: On the solutions of Eringen’s micropolar plate equations and of other approximate equations. Int. J. Eng. Sci. 28(9), 919–925 (1990)

    Article  MATH  Google Scholar 

  317. Wang F.Y., Zhou Y.: On the vibration modes of three-dimensional micropolar elastic plates. J. Sound Vib. 146(1), 1–16 (1991)

    Article  Google Scholar 

  318. Wierzbicki E., Wozniak C.: On the dynamics of combined plane periodic structures. Arch. Appl. Mech. 70(6), 387–398 (2000)

    Article  MATH  Google Scholar 

  319. Wilson E.B.: Vector Analysis, Founded upon the Lectures of J. W. Gibbs. Yale University Press, New Haven (1901)

    Google Scholar 

  320. Woźniak C. (eds): Mechanika spŗeżystych płyt i powłok. PWN, Warszawa (2001)

    Google Scholar 

  321. Xiao H.: On symmetries and anisotropies of classical and micropolar linear elasticities: a new method based upon a complex vector basis and some systematic results. J. Elast. 49, 129–162 (1998)

    Article  MATH  Google Scholar 

  322. Yang H.T.Y., Saigal S., Masud A., Kapania R.K.: A survey of recent shell finite elements. Int. J. Numer. Methods Eng. 47(1–3), 101–127 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  323. Yeremeyev V.A., Zubov L.M.: The theory of elastic and viscoelastic micropolar liquids. J. Appl. Math. Mech. 63, 755–767 (1999)

    Article  MathSciNet  Google Scholar 

  324. Zervos A., Vardoulakis I., Jean M., Lerat P.: Numerical investigation of granular interfaces kinematics. Mech. Cohesive-frictional Mater. 5(4), 305–324 (2000)

    Article  Google Scholar 

  325. Zhang H.W., Wang H., Wriggers P., Schrefler B.A.: A finite element model for contact analysis of multiple Cosserat bodies. Comput. Mech. 36(6), 444–458 (2005)

    Article  MATH  Google Scholar 

  326. Zhilin P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)

    Article  MathSciNet  Google Scholar 

  327. Zhilin, P.A.: Applied Mechanics. Foundations of the Theory of Shells (in Russian). St. Petersburg State Polytechnical University, Saint Petersburg (2006)

  328. Zubov L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)

    MATH  Google Scholar 

  329. Zubov L.M.: Nonlinear theory of isolated and continuosly distributed dislocations in elastic shells. Arch. Civil Eng. XLV(2), 385–396 (1999)

    Google Scholar 

  330. Zubov L.M.: Semi-inverse solutions in nonlinear theory of elastic shells. Arch. Mech. 53(4–5), 599–610 (2001)

    MATH  MathSciNet  Google Scholar 

  331. Zubov L.M.: Continuously distributed dislocations and disclinations in nonlinearly elastic micropolar media. Doklady Phys. 49(5), 308–310 (2004)

    Article  MathSciNet  Google Scholar 

  332. Zubov L.M., Eremeev V.A.: Equations for a viscoelastic micropolar fluid. Doklady Phys. 41(12), 598–601 (1996)

    MATH  MathSciNet  Google Scholar 

  333. Zubov L.M., Karyakin M.I.: Dislocations and disclinations in nonlinear elastic bodies with moment stresses. J. Appl. Mech. Tech. Phys. 31(3), 493–500 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach.

Additional information

Dedicated to Professor Horst Lippmann (1931–2008)

The work of V. A. Eremeyev was supported by the German Academic Exchange Service (DAAD) “Forschungsaufenthalte für Hochschullehrer und Wissenschaftler” in 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenbach, J., Altenbach, H. & Eremeyev, V.A. On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch Appl Mech 80, 73–92 (2010). https://doi.org/10.1007/s00419-009-0365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0365-3

Keywords

Navigation