Skip to main content
Log in

A three-dimensional constitutive model for shape memory alloys

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Shape memory alloys (SMAs) are materials that, among other characteristics, have the ability to present high deformation levels when subjected to mechanical loading, returning to their original form after a temperature change. Literature presents numerous constitutive models that describe the phenomenological features of the thermomechanical behavior of SMAs. The present paper introduces a novel three-dimensional constitutive model that describes the martensitic phase transformations within the scope of standard generalized materials. The model is capable of describing the main features of the thermomechanical behavior of SMAs by considering four macroscopic phases associated with austenitic phase and three variants of martensite. A numerical procedure is proposed to deal with the nonlinearities of the model. Numerical simulations are carried out dealing with uniaxial and multiaxial single-point tests showing the capability of the introduced model to describe the general behavior of SMAs. Specifically, uniaxial tests show pseudoelasticity, shape memory effect, phase transformation due to temperature change and internal subloops due to incomplete phase transformations. Concerning multiaxial tests, the pure shear stress and hydrostatic tests are discussed showing qualitatively coherent results. Moreover, other tensile–shear tests are conducted modeling the general three-dimensional behavior of SMAs. It is shown that the multiaxial results are qualitative coherent with the related data presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguiar, R.A.A., Savi, M.A., Pacheco, P.M.C.L.: Experimental and numerical investigations of shape memory alloy helical springs. Smart Mater. Struct. (2010). doi:10.1088/0964-1726/19/2/025008

  2. Auricchio F., Reali A., Stefanelli U.: A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int. J. Plast. 23, 207–226 (2007)

    Article  MATH  Google Scholar 

  3. Baêta-Neves A.P., Savi M.A., Pacheco P.M.C.L.: On the Fremond’s constitutive model for shape memory alloys. Mech. Res. Commun. 31(6), 677–688 (2004)

    Article  MATH  Google Scholar 

  4. Brocca M., Brinson L.C., Bazant Z.P.: Three-dimensional constitutive model for shape memory alloys based on microplane model. J. Mech. Phys. Solids 50, 1051–1077 (2002)

    Article  MATH  Google Scholar 

  5. Fremond, M.: Shape memory alloy: a thermomechanical macroscopic theory. CISM Courses and Lectures, 351, New York (1996)

  6. Gall K., Sehitoglu H.: The role of texture in tension-compression asymmetry in polycrystalline Ni–Ti. Int. J. Plast. 15, 69–92 (1999)

    Article  MATH  Google Scholar 

  7. Grabe, C., Bruhns, O.T.: Tension/torsion tests of pseudoelastic, polycrystalline NiTi shape memory alloys under temperature control. Mater. Sci. Eng. A (2007). doi:10.101111111116/j.msea.2007.03.117

  8. Jackson, C.M., Wagner, H.J., Wasilewski, R.J.: 55-Nitinol—the alloy with a memory: its physical metallurgy, properties, and applications. NASA-SP-5110 (1972)

  9. Kalamkarov A.L., Kolpakov A.G.: Analysis, Design and Optimization of Composite Structures. Wiley, Chichester (1997)

    MATH  Google Scholar 

  10. Lagoudas D.C.: Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2008)

    Google Scholar 

  11. Lagoudas D.C., Entchev P.B., Popov P., Patoor E., Brinson L.C., Gao X.: Shape memory alloys, part II: modeling of polycrystals. Mech. Mater. 38, 430–462 (2006)

    Article  Google Scholar 

  12. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  13. Levitas V.I., Preston D.L., Lee D.-W.: Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys. Rev. B 68, 134201 (2003)

    Article  Google Scholar 

  14. Machado L.G., Savi M.A.: Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36(6), 683–691 (2003)

    Article  Google Scholar 

  15. Manach P., Favier D.: Shear and tensile thermomechanical behavior of near equiatomic NiTi alloy. Mater. Sci. Eng. A 222, 45–47 (1997)

    Article  Google Scholar 

  16. Matsumoto O., Miyazaki S., Otsuka K., Tamura H.: Crystallography of martensitic-transformation in Ti–Ni single crystals. ACTA Metall. 35(8), 2137–2144 (1987)

    Article  Google Scholar 

  17. McNaney J.M., Imbeni V., Jung Y., Papadopoulos P., Ritchie R.O.: An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mech. Mater. 35, 969–986 (2007)

    Article  Google Scholar 

  18. Monteiro P.C.C. Jr, Savi M.A., Netto T.A., Pacheco P.M.C.L.: A phenomenological description of the thermomechanical coupling and the rate-dependent behavior of shape memory alloys. J. Intell. Mater. Syst. Struct. 20(14), 1675–1687 (2009)

    Article  Google Scholar 

  19. Ortiz M., Pinsky P.M., Taylor R.L.: Operator split methods for the numerical solution of the elastoplastic dynamic problem. Comput. Methods Appl. Mech. Eng. 39, 137–157 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Otsuka K., Ren X.: Recent developments in the research of shape memory alloys. Intermetallics 7, 511–528 (1999)

    Article  Google Scholar 

  21. Paiva, A., Savi, M.A.: An overview of constitutive models for shape memory alloys. Math. Probl. Eng. Article ID 56876, 1–30 (2006)

    Google Scholar 

  22. Paiva A., Savi M.A., Braga A.M.B., Pacheco P.M.C.L.: A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. Int. J. Solids Struct. 42(11–12), 3439–3457 (2005)

    Article  MATH  Google Scholar 

  23. Panico M., Brinson L.C.: A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 55(11), 2491–2511 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Patoor E., Lagoudas D.C., Entchev P.B., Brinson L.C., Gao X.: Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38, 391–429 (2006)

    Article  Google Scholar 

  25. Popov P., Lagoudas D.C.: A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int. J. Plast. 23, 1679–1720 (2007)

    Article  MATH  Google Scholar 

  26. Rockafellar R.T.: Convex Analysis. Princeton Press, Princeton, New Jersey (1970)

    MATH  Google Scholar 

  27. Sittner P., Hara Y., Tokuda M.: Experimental-study on the thermoelastic martensitic-transformation in shape-memory alloy polycrystal induced by combined external forces. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 26(11), 2923–2935 (1995)

    Article  Google Scholar 

  28. Savi M.A., Paiva A., Baêta-Neves A.P., Pacheco P.M.C.L.: Phenomenological modeling and numerical simulation of shape memory alloys: a thermo-plastic-phase transformation coupled model. J. Intell. Mater. Syst. Struct. 13(5), 261–273 (2002)

    Article  Google Scholar 

  29. Savi M.A., Paiva A.: Describing internal subloops due to incomplete phase transformations in shape memory alloys. Arch. Appl. Mech. 74(9), 637–647 (2005)

    Article  MATH  Google Scholar 

  30. Schroeder T.A., Wayman C.M.: The formation of martensite and the mechanism of the shape memory effect in single crystals of Cu–Zn alloys. ACTA Metall. 25, 1375 (1977)

    Article  Google Scholar 

  31. Shaw J.A., Kyriades S.: Thermomechanical aspects of Ni–Ti. J. Mech. Phys. Solids 43(8), 1243–1281 (1995)

    Article  Google Scholar 

  32. Souza A.C., Mamiya E., Zouain N.: Three-dimensional model for solids undergoing stress-induced phase transformations. Eur. J. Mech. A Solids 17, 789–806 (1998)

    Article  MATH  Google Scholar 

  33. Wang Y.F., Yue Z.F., Wang J.: Experimental and numerical study of the superelastic behaviour on NiTi thin-walled tube under biaxial loading. Comput. Mater. Sci. 40(2), 246–254 (2007)

    Article  Google Scholar 

  34. Zaki, W., Moumni, Z.: A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids (2007). doi:10.1016/j.jmps.2007.03.012

  35. Zhang, X.D., Rogers, C.A., Liang, C.: Modeling of two-way shape memory effect. Smart Struct. Mater. ASME, pp. 79–90 (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Savi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, S.A., Savi, M.A. & Kalamkarov, A.L. A three-dimensional constitutive model for shape memory alloys. Arch Appl Mech 80, 1163–1175 (2010). https://doi.org/10.1007/s00419-010-0430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0430-y

Keywords

Navigation