Skip to main content
Log in

A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Crack initiation in brittle materials is not covered by classical fracture mechanics that deals only with the growth of pre-existing cracks. In order to overcome this deficiency, the Finite Fracture Mechanics concept assumes the instantaneous formation of cracks of finite size at initiation. Within this framework, a coupled criterion was proposed at the beginning of the 2000’s requiring two necessary conditions to be fulfilled simultaneously. The first one compares the tensile stress to the tensile strength, while the other uses an energy balance and the material toughness. The present analysis is restricted to the 2D case, and, through a wide list of references, it is shown that this criterion gives predictions in agreement with experiments in various cases of stress concentration, which can be classified in two categories: the singularities, i.e. indefinitely growing stresses at a point, and the non-singular stress raisers. It is applied to different materials and structures: notched specimens, laminates, adhesive joints or embedded inclusions. Of course, a lot of work remains to do in these domains but also in domains that are almost not explored such as fatigue loadings and dynamic loadings as well as a sound 3D extension. Some ideas in these directions are issued before concluding that FFM and the coupled criterion have filled a gap in fracture mechanics.

Résumé

L’approche classique de la mécanique de la rupture des matériaux fragiles n’aborde pas les problèmes d’initiation de nouvelles fissures, elle ne traite que la croissance de fissures préexistantes. Afin de surmonter cette déficience, l’approche connue sous la désignation anglo-saxonne de Finite Fracture Mechanics suppose la formation instantanée de fissures de taille finie à l’initiation. Développé dans ce cadre, le critère couplé requiert la vérification simultanée de deux conditions nécessaires : la première compare la contrainte de traction à la résistance en traction du matériau tandis que l’autre utilise une équation de conservation de l’énergie et fait appel à la ténacité. La présente analyse se limite au cas 2D et, à travers une longue liste de références, il est montré que le critère couplé donne, aux points de concentration de contraintes, des prédictions d’amorçage de fissures qui sont en accord avec les expériences. On peut distinguer deux catégories : les singularités, lorsque les contraintes croissent indéfiniment en s’approchant d’un point, et les simples concentrations de contraintes, lorsque celles-ci tout en étant élevées restent bornées. Le critère est appliqué à différents matériaux et structures: éprouvettes entaillées, composites stratifiés, joints adhésifs, inclusions. Bien sûr, beaucoup de travail reste à faire dans ces domaines, mais il existe aussi des sujets qui ne sont pratiquement pas explorés comme la fatigue, les chargements dynamiques ainsi qu’une généralisation aux situations tridimensionnelles. Quelques idées sont émises dans ces directions avant de conclure que la FFM et le critère couplé ont comblé une lacune en mécanique de la rupture.

Zusammenfassung

Die Initiierung von Rissen wird in der klassischen Bruchmechanik nicht umfasst, da sich diese auf die Beschreibung des Verhaltens vorhandener Risse beschränkt. In der Bruchmechanik finiter Risse wird diese Einschränkung durch die Betrachtung der instantanen Entstehung von Rissen endlicher Länge aufgehoben. Im Rahmen dieses Konzeptes wurde ein gekoppeltes Kriterium vorgeschlagen, das eine hinreichende Versagensbedingung in Form zweier gleichzeitig zu erfüllender notwendiger Bedingungen darstellt: eine Bedingung der Festigkeitsmechanik und eine Energiebedingung für den Bruchprozess. Die gegenwärtige Formulierung ist auf zweidimensionale Modelle beschränkt und ist, wie anhand zahlreicher Referenzen dargestellt, geeignet experimentelle Ergebnisse über Versagen an unterschiedlichsten Spannungskonzentratoren korrekt abzubilden. Diese lassen sich klassifizieren in singuläre Spannungskonzentratoren mit lokal unendlich hohen Spannungen und in nicht-singuläre Spannungskonzentratoren mit lokal stark erhöhten aber endlichen Spannungen. Das Kriterium wurde auf verschiedenste Struktursituationen und Materialen angewendet: gekerbte Bauteile, Laminate, Klebverbindungen oder auch Materialeinschlüsse. Jedoch verbleiben weitere unerschlossene Felder für weitere Untersuchungen wie etwa die Betrachtung von zyklischen und dynamischen Lasten oder eine gründliche Erweiterung auf dreidimensionale Risse. Mögliche Ansätze für solche Erweiterungen werden vorgestellt bevor der Schluss gezogen wird, dass die Bruchmechanik finiter Risse mit dem gekoppelten Kriterium eine Lücke in der Bruchmechanik geschlossen hat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. It should be noted that Li, Hong and Bažant have proposed a related criterion [19, 130] some years earlier. They developed a crack initiation criterion that also uses the concept of finite cracks to analyse the formation of crack patterns on smooth surfaces. A detailed discussion of the relationship and the fundamental differences to Leguillon’s coupled criterion is given in Sect. 5.1.4.

  2. Sometimes also denoted as Notch Stress Intensity Factor.

  3. First non-singular term of the asymptotic expansion corresponding to tensile normal stresses parallel to the crack.

  4. See Eq. (31) for \(\mathcal {G} = \lim (\varDelta a \rightarrow 0) \varDelta \varPi / \varDelta a \) in the 2D case.

References

  1. Abdollahi, A., Arias, I.: Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Mater. 59(12), 4733–4746 (2011)

    Article  Google Scholar 

  2. Adams, R., Comyn, J., Wake, W.: Structural Adhesive Joints in Engineering. Springer, Berlin (1997)

    Google Scholar 

  3. Ahn, B., Curtin, W., Parthasarathy, T., Dutton, R.: Criteria for crack deflection/penetration criteria for fiber-reinforced ceramic matrix composites. Compos. Sci. Technol. 58(11), 1775–1784 (1998)

    Article  Google Scholar 

  4. Ainsworth, R.: The treatment of thermal and residual stresses in fracture assessments. Eng. Fract. Mech. 24(1), 65–76 (1986)

    Article  MathSciNet  Google Scholar 

  5. Alfano, G., Crisfield, M.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50(7), 1701–1736 (2001)

    Article  MATH  Google Scholar 

  6. Allix, O., Ladevèze, P.: Interlaminar interface modelling for the prediction of delamination. Compos. Struct. 22(4), 235–242 (1992)

    Article  Google Scholar 

  7. de Almeida, S.M., Hansen, J.S.: Enhanced elastic buckling loads of composite plates with tailored thermal residual stresses. J. Appl. Mech. 64(4), 772–780 (1997)

    Article  MATH  Google Scholar 

  8. Amiri, F., Millán, D., Shen, Y., Rabczuk, T., Arroyo, M.: Phase-field modeling of fracture in linear thin shells. Theor. Appl. Fract. Mech. 69, 102–109 (2014)

    Article  Google Scholar 

  9. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2005)

    Google Scholar 

  10. Andersons, J., Tarasovs, S., Spārniņš, E.: Finite fracture mechanics analysis of crack onset at a stress concentration in a UD glass/epoxy composite in off-axis tension. Compos. Sci. Technol. 70(9), 1380–1385 (2010)

    Article  Google Scholar 

  11. Aranson, I., Kalatsky, V., Vinokur, V.: Continuum field description of crack propagation. Phys. Rev. Lett. 85(1), 118 (2000)

    Article  Google Scholar 

  12. Arteiro, A., Catalanotti, G., Xavier, J., Camanho, P.: Notched response of non-crimp fabric thin-ply laminates: analysis methods. Compos. Sci. Technol. 88, 165–171 (2013)

    Article  Google Scholar 

  13. Ayatollahi, M., Mirsayar, M.: Kinking angles for interface cracks. Proc. Eng. 10, 325–329 (2011)

    Article  Google Scholar 

  14. Bailey, J., Parvizi, A.: On fibre debonding effects and the mechanism of transverse-ply failure in cross-ply laminates of glass fibre/thermoset composites. J. Mater. Sci. 16(3), 649–659 (1981)

    Article  Google Scholar 

  15. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7(1), 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  16. Bažant, Z.: Size effect in blunt fracture: concrete, rock, metal. J. Eng. Mech. 110(4), 518–535 (1984)

    Article  Google Scholar 

  17. Bažant, Z., Planas, J.: Fracture and Size Effect in Concrete and Other Quasibrittle Materials, vol. 16. CRC Press, Boca Raton (1997)

    Google Scholar 

  18. Bažant, Z., Gettu, R., Kazemi, M.: Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28(1), 43–51 (1991)

    Article  Google Scholar 

  19. Bažant, Z.P., Li, Y.N.: Penetration fracture of sea ice plate: simplified analysis and size effect. J. Eng. Mech. 120(6), 1304–1321 (1994)

    Article  Google Scholar 

  20. Beghini, M., Bertini, L., Di Lello, R., Fontanari, V.: A general weight function for inclined cracks at sharp V-notches. Eng. Fract. Mech. 74(4), 602–611 (2007)

    Article  Google Scholar 

  21. Bermejo, R., Torres, Y., Sanchez-Herencia, A., Baudin, C., Anglada, M., Llanes, L.: Residual stresses, strength and toughness of laminates with different layer thickness ratios. Acta Mater. 54, 4745–4757 (2006)

    Article  Google Scholar 

  22. Bogy, D.: Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J. Appl. Mech. 38, 377 (1971)

    Article  Google Scholar 

  23. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Broberg, K.B.: Cracks and Fracture. Academic Press, San Diego (1999)

    Google Scholar 

  25. Camanho, P., Erçin, G., Catalanotti, G., Mahdi, S., Linde, P.: A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Compos. A: Appl. Sci. Manuf. 43(8), 1219–1225 (2012)

    Article  Google Scholar 

  26. Camanho, P.P., Maimí, P., Dávila, C.: Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol. 67(13), 2715–2727 (2007)

    Article  Google Scholar 

  27. Campilho, R., Banea, M.D., Neto, J., da Silva, L.F.: Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes. 44, 48–56 (2013)

    Article  Google Scholar 

  28. Carpinteri, A.: Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners. Eng. Fract. Mech. 26(1), 143–155 (1987)

    Article  Google Scholar 

  29. Carpinteri, A., Cornetti, P., Pugno, N., Sapora, A., Taylor, D.: A finite fracture mechanics approach to structures with sharp V-notches. Eng. Fract. Mech. 75(7), 1736–1752 (2008)

    Article  Google Scholar 

  30. Carpinteri, A., Cornetti, P., Pugno, N., Sapora, A.: The problem of the critical angle for edge and center V-notched structures. Eur. J. Mech. A Solids 30(3), 281–285 (2011)

    Article  MATH  Google Scholar 

  31. Carpinteri, A., Cornetti, P., Sapora, A.: A Finite Fracture Mechanics approach to the asymptotic behaviour of U-notched structures. Fatigue Fract. Eng. Mater. Struct. 35(5), 451–457 (2012)

    Article  Google Scholar 

  32. Carraro, P., Quaresimin, M.: Modelling fibre-matrix debonding under biaxial loading. Compos. A: Appl. Sci. Manuf. 61, 33–42 (2014)

    Article  Google Scholar 

  33. Carrere, N., Martin, E., Leguillon, D.: Comparison between models based on a coupled criterion for the prediction of the failure of adhesively bonded joints. Eng. Fract. Mech. 138, 185–201 (2015)

    Article  Google Scholar 

  34. Catalanotti, G., Camanho, P.: A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates. Compos. Sci. Technol. 76, 69–76 (2013)

    Article  Google Scholar 

  35. Chiaia, B., Cornetti, P., Frigo, B.: Triggering of dry snow slab avalanches: stress versus fracture mechanical approach. Cold Reg. Sci. Technol. 53(2), 170–178 (2008)

    Article  Google Scholar 

  36. Cicero, S., Madrazo, V., Carrascal, I.: Analysis of notch effect in PMMA using the theory of critical distances. Eng. Fract. Mech. 86, 56–72 (2012)

    Article  Google Scholar 

  37. Cook, J., Gordon, J., Evans, C., Marsh, D.: A mechanism for the control of crack propagation in all-brittle systems. Proc. R. Soc. Lond. A Math. Phys. Sci. 282(1391), 508–520 (1964)

    Article  Google Scholar 

  38. Cornetti, P., Pugno, N., Carpinteri, A., Taylor, D.: Finite fracture mechanics: a coupled stress and energy failure criterion. Eng. Fract. Mech. 73(14), 2021–2033 (2006)

    Article  Google Scholar 

  39. Cornetti, P., Mantič, V., Carpinteri, A.: Finite Fracture Mechanics at elastic interfaces. Int. J. Solids Struct. 49(7), 1022–1032 (2012)

    Article  Google Scholar 

  40. Cornetti, P., Sapora, A., Carpinteri, A.: Mode mixity and size effect in V-notched structures. Int. J. Solids Struct. 50(10), 1562–1582 (2013)

    Article  Google Scholar 

  41. Cotterell, B., Rice, J.: Slightly curved or kinked cracks. Int. J. Fract. 16(2), 155–169 (1980)

    Article  Google Scholar 

  42. da Silva, L., Campilho, R.D.: Advances in Numerical Modelling of Adhesive Joints. Springer, Berlin (2012)

    Book  Google Scholar 

  43. da Silva, L., Rodrigues, T., Figueiredo, M., Moura, M.D., Chousal, J.: Effect of adhesive type and thickness on the lap shear strength. J. Adhes. 82(11), 1091–1115 (2006)

    Article  Google Scholar 

  44. da Silva, L., das Neves, P., Adams, R., Spelt, J.: Analytical models of adhesively bonded joints—part I: literature survey. Int. J. Adhes. Adhes. 29(3), 319–330 (2009a)

    Article  Google Scholar 

  45. da Silva, L., das Neves, P., Adams, R., Wang, A., Spelt, J.: Analytical models of adhesively bonded joints—part II: comparative study. Int. J. Adhes. Adhes. 29(3), 331–341 (2009b)

    Article  Google Scholar 

  46. da Silva, L., Öchsner, A., Adams, R.: Handbook of Adhesion Technology. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  47. Diaz, A.D., Caron, J.F.: Prediction of the onset of mode III delamination in carbon–epoxy laminates. Compos. Struct. 72(4), 438–445 (2006)

    Article  Google Scholar 

  48. Dieringer, R., Becker, W.: A new scaled boundary finite element formulation for the computation of singularity orders at cracks and notches in arbitrarily laminated composites. Compos. Struct. 123, 263–270 (2015)

    Article  Google Scholar 

  49. Dugdale, D.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960a)

    Article  Google Scholar 

  50. Dunn, M.L., Suwito, W., Cunningham, S.: Fracture initiation at sharp notches: correlation using critical stress intensities. Int. J. Solids Struct. 34(29), 3873–3883 (1997a)

    Article  MATH  Google Scholar 

  51. Dunn, M.L., Suwito, W., Cunningham, S., May, C.W.: Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading. Int. J. Fract. 84(4), 367–381 (1997b)

  52. Eastgate, L., Sethna, J.P., Rauscher, M., Cretegny, T., Chen, C.S., Myers, C.: Fracture in mode I using a conserved phase-field model. Phys. Rev. E 65(3), 036,117 (2002)

    Article  Google Scholar 

  53. El Haddad, M., Topper, T., Smith, K.: Prediction of non propagating cracks. Eng. Fract. Mech. 11(3), 573–584 (1979)

    Article  Google Scholar 

  54. Elices, M., Guinea, G., Gomez, J., Planas, J.: The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69(2), 137–163 (2002)

    Article  Google Scholar 

  55. Erçin, G., Camanho, P., Xavier, J., Catalanotti, G., Mahdi, S., Linde, P.: Size effects on the tensile and compressive failure of notched composite laminates. Compos. Struct. 96, 736–744 (2013)

    Article  Google Scholar 

  56. Evans, A., Zok, F., Davis, J.: The role of interfaces in fiber-reinforced brittle matrix composites. Compos. Sci. Technol. 42(1), 3–24 (1991)

    Article  Google Scholar 

  57. Fett, T.: Failure of brittle materials near stress singularities. Eng. Fract. Mech. 53(4), 511–518 (1996)

    Article  Google Scholar 

  58. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  59. Garcia, I., Leguillon, D.: Mixed-mode crack initiation at a V-notch in presence of an adhesive joint. Int. J. Solids Struct. 49(15), 2138–2149 (2012)

    Article  Google Scholar 

  60. García, I., Mantič, V., Blázquez, A., París, F.: Transverse crack onset and growth in cross-ply [0/90]s laminates under tension. Application of a coupled stress and energy criterion. Int. J. Solids Struct. 51(23), 3844–3856 (2014a)

    Article  Google Scholar 

  61. García, I., Paggi, M., Mantič, V.: Fiber-size effects on the onset of fiber-matrix debonding under transverse tension: a comparison between cohesive zone and finite fracture mechanics models. Eng. Fract. Mech. 115, 96–110 (2014b)

    Article  Google Scholar 

  62. García, I., Mantič, V., Graciani, E.: A model for the prediction of debond onset in spherical-particle-reinforced composites under tension. Application of a coupled stress and energy criterion. Compos. Sci. Technol. 106, 60–67 (2015a)

    Article  Google Scholar 

  63. García, I., Mantič, V., Graciani, E.: Debonding at the fibre-matrix interface under remote transverse tension. One debond or two symmetric debonds? Eur. J. Mech. A Solids 53, 75–88 (2015b)

    Article  MathSciNet  Google Scholar 

  64. Garrett, K., Bailey, J.: Multiple transverse fracture in 90 cross-ply laminates of a glass fibre-reinforced polyester. J. Mater. Sci. 12(1), 157–168 (1977)

    Article  Google Scholar 

  65. Gleich, D., Van Tooren, M., Beukers, A.: Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures. J. Adhes. Sci. Technol. 15(9), 1091–1101 (2001)

    Article  Google Scholar 

  66. Goland, M., Reissner, E.: The stresses in cemented joints. J. Appl. Mech. 11(1), A17–A27 (1944)

    Google Scholar 

  67. Goswami, S., Becker, W.: Computation of 3-D stress singularities for multiple cracks and crack intersections by the scaled boundary finite element method. Int. J. Fract. 175(1), 13–25 (2012)

    Article  Google Scholar 

  68. Greco, F., Leonetti, L., Blasi, P.N.: Non-linear macroscopic response of fiber-reinforced composite materials due to initiation and propagation of interface cracks. Eng. Fract. Mech. 80, 92–113 (2012)

    Article  Google Scholar 

  69. Green, B., Wisnom, M., Hallett, S.: An experimental investigation into the tensile strength scaling of notched composites. Compos. A: Appl. Sci. Manuf. 38(3), 867–878 (2007)

    Article  Google Scholar 

  70. Grenestedt, J.L., Hallstrom, S.: Crack initiation from homogeneous and bimaterial corners. J. Appl. Mech. 64(4), 811–818 (1997)

    Article  MATH  Google Scholar 

  71. Gross, D., Seelig, T.: Fracture Mechanics: With an Introduction to Micromechanics. Springer, Berlin (2011)

    Book  Google Scholar 

  72. Harry, R., Lecuyer, F., Marion, G.: Détection expérimentale de l’amorçage du délaminage de stratifiés à l’aide de l’émission acoustique. Comptes Rendus des onzièmes journées nationales sur les composites. Arcachon, France (1998)

    Google Scholar 

  73. Hashin, Z.: Finite thermoelastic fracture criterion with application to laminate cracking analysis. J. Mech. Phys. Solids 44(7), 1129–1145 (1996)

    Article  Google Scholar 

  74. He, M.Y., Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25(9), 1053–1067 (1989a)

    Article  Google Scholar 

  75. He, M.Y., Hutchinson, J.W.: Kinking of a crack out of an interface. J. Appl. Mech. 56(2), 270–278 (1989b)

    Article  Google Scholar 

  76. He, M.Y., Bartlett, A., Evans, A., Hutchinson, J.W.: Kinking of a crack out of an interface: role of in-plane stress. J. Am. Ceram. Soc. 74, 767–771 (1991)

    Article  Google Scholar 

  77. Hebel, J., Becker, W.: Numerical analysis of brittle crack initiation at stress concentrations in composites. Mech. Adv. Mater. Struct. 15(6–7), 410–420 (2008)

    Article  Google Scholar 

  78. Hebel, J., Dieringer, R., Becker, W.: Modeling brittle crack formation at geometrical and material discontinuities using a Finite Fracture Mechanics approach. Eng. Fract. Mech. 77(18), 3558–3572 (2010)

    Article  Google Scholar 

  79. Hein, V., Erdogan, F.: Stress singularities in a two-material wedge. Int. J. Fract. Mech. 7(3), 317–330 (1971)

    Google Scholar 

  80. Hell, S., Becker, W.: Hypersingularities in three-dimensional crack configurations in composite laminates. PAMM 14(1), 157–158 (2014)

    Article  Google Scholar 

  81. Hell, S., Weißgraeber, P., Felger, J., Becker, W.: A coupled stress and energy criterion for the assessment of crack initiation in single lap joints: A numerical approach. Eng. Fract. Mech. 117, 112–126 (2014)

    Article  Google Scholar 

  82. Henninger, C., Leguillon, D.: Adhesive fracture of an epoxy joint under thermal and mechanical loadings. J. Therm. Stresses 31, 59–76 (2008)

    Article  Google Scholar 

  83. Henninger, C., Leguillon, D., Martin, E.: Crack initiation at a V-notch—comparison between a brittle fracture criterion and the Dugdale cohesive model. Comptes Rend. Méc. 335(7), 388–393 (2007)

    Article  Google Scholar 

  84. Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6(6), 773–781 (1976)

    Article  Google Scholar 

  85. Hills, D., Dini, D.: Characteristics of the process zone at sharp notch roots. Int. J. Solids Struct. 48(14), 2177–2183 (2011)

    Article  Google Scholar 

  86. Hofacker, M., Miehe, C.: A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns. Int. J. Numer. Meth. Eng. 93(3), 276–301 (2013)

    Article  MathSciNet  Google Scholar 

  87. Hong, A.P., Li, Y.N., Bažant, Z.P.: Theory of crack spacing in concrete pavements. J. Eng. Mech. 123(3), 267–275 (1997)

    Article  Google Scholar 

  88. Hu, G., Weng, G.: Influence of thermal residual stresses on the composite macroscopic behavior. Mech. Mater. 27(4), 229–240 (1998)

    Article  MathSciNet  Google Scholar 

  89. Inglis, C.: Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Naval Arch. 55, 219–230 (1913)

    Google Scholar 

  90. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  91. Jaubert, A., Marigo, J.: Justification of a Paris-type fatigue law from cohesive forces model via a variational approach. Continuum Mech. Thermodyn. 18, 23–45 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  92. Jenq, Y., Shah, S.P.: Two parameter fracture model for concrete. J. Eng. Mech. 111(10), 1227–1241 (1985)

    Article  Google Scholar 

  93. Kang, K.: Criteria for kinking out of an interface. Eng. Fract. Mech. 49, 587–598 (1994)

    Article  Google Scholar 

  94. Kant, T., Swaminathan, K.: Estimation of transverse/interlaminar stresses in laminated composites—a selective review and survey of current developments. Compos. Struct. 49(1), 65–75 (2000)

    Article  Google Scholar 

  95. Kim, J.K., Kim, D.S., Takeda, N.: Notched strength and fracture criterion in fabric composite plates containing a circular hole. J. Compos. Mater. 29(7), 982–998 (1995)

    Article  Google Scholar 

  96. Kirsch, G.: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereines Deutscher Ingenieure 42, 727–807 (1898)

    Google Scholar 

  97. Kitagawa, H., Takahashi, S.: Applicability of fracture mechanics to very small cracks or the cracks in the early stage. In: Second International Conference on Mechanical Behavior of Materials. ASM, Metals Park, Ohio, pp. 627–631 (1976)

  98. Kuhn, C., Müller, R.: A continuum phase field model for fracture. Eng. Fract. Mech. 77(18), 3625–3634 (2010)

    Article  Google Scholar 

  99. Kuhn, C., Müller, R.: Simulation of size effects by a phase field model for fracture. Theor. Appl. Mech. Lett. 4(5), 051,008 (2014)

    Article  Google Scholar 

  100. Kuhn, C., Schlüter, A., Müller, R.: On degradation functions in phase field fracture models. Comput. Mater. Sci. 108, 374–384 (2015)

    Article  Google Scholar 

  101. Kuna, M.: Finite elements in fracture mechanics. Theory–Numerics–Applications Solid Mechanics and Its Applications, vol. 201 (2013)

  102. Labossiere, P., Dunn, M.: Fracture initiation at three-dimensional bimaterial interface corners. J. Mech. Phys. Solids 49, 609–634 (2001)

    Article  MATH  Google Scholar 

  103. Lagunegrand, L., Lorriot, T., Harry, R., Wargnier, H., Quenisset, J.: Initiation of free-edge delamination in composite laminates. Compos. Sci. Technol. 66(10), 1315–1327 (2006)

    Article  Google Scholar 

  104. l’Armée, A.T., Stein, N., Becker, W.: Bending moment calculation for single lap joints with composite laminate adherends including bending-extensional coupling. Int. J. Adhes. Adhes. 66, 41–52 (2015)

  105. Lazzarin, P., Zambardi, R.: A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int. J. Fract. 112(3), 275–298 (2001)

    Article  Google Scholar 

  106. Lazzarin, P., Quaresimin, M., Ferro, P.: A two-term stress function approach to evaluate stress distributions in bonded joints of different geometries. J. Strain Anal. Eng. Des. 37(5), 385–398 (2002)

    Article  Google Scholar 

  107. Lazzarin, P., Campagnolo, A., Berto, F.: A comparison among some recent energy-and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading. Theor. Appl. Fract. Mech. 71, 21–30 (2014)

    Article  Google Scholar 

  108. Lee, W., Howard, S., Clegg, W.: Growth of interface defects and its effect on crack deflection and toughening criteria. Acta Mater. 44(10), 3905–3922 (1996)

    Article  Google Scholar 

  109. Leguillon, D.: Asymptotic analysis of a spontaneous crackgrowth. Application to a blunt crack. In: IUTAM Symposium on Non-linear Singularities in Deformation and Flow, Springer, pp. 169–180

  110. Leguillon, D.: Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. A Solids 21(1), 61–72 (2002)

    Article  MATH  Google Scholar 

  111. Leguillon, D.: Computation of 3D singular elastic fields for the prediction of failure at corners. Key Eng. Mater. 251–252, 147–152 (2003)

    Article  Google Scholar 

  112. Leguillon, D.: A simple model of thermal crack pattern formation using the coupled criterion. Comptes Rend. Méc. 341(6), 538–546 (2013)

    Article  Google Scholar 

  113. Leguillon, D.: An attempt to extend the 2D coupled criterion for crack nucleation in brittle materials to the 3D case. Theor. Appl. Fract. Mech. 74, 7–17 (2014)

    Article  Google Scholar 

  114. Leguillon, D., Martin, E.: The strengthening effect caused by an elastic contrast—part I: the bimaterial case. Int. J. Fract. 179(1–2), 157–167 (2013a)

    Article  Google Scholar 

  115. Leguillon, D., Martin, E.: The strengthening effect caused by an elastic contrast—part II: stratification by a thin stiff layer. Int. J. Fract. 179(1–2), 169–178 (2013b)

    Article  Google Scholar 

  116. Leguillon, D., Murer, S.: A criterion for crack kinking out of an interface. Key Eng. Mater. 385–387, 9–12 (2008a)

    Article  Google Scholar 

  117. Leguillon, D., Murer, S.: Crack deflection in a biaxial stress state. Int. J. Fract. 150(1–2), 75–90 (2008b)

    Article  MATH  Google Scholar 

  118. Leguillon, D., Murer, S.: Fatigue crack nucleation at a stress concentration point. In: CP2012 Conference Proceedings, vol. 46 (2012)

  119. Leguillon, D., Yosibash, Z.: Crack onset at a V-notch. Influence of the notch tip radius. Int. J. Fract. 122(1–2), 1–21 (2003)

    Article  Google Scholar 

  120. Leguillon, D., Lacroix, C., Martin, E.: Crack deflection by an interface—asymptotics of the residual thermal stresses. Int. J. Solids Struct. 38, 7423–7445 (2001)

    Article  MATH  Google Scholar 

  121. Leguillon, D., Laurencin, J., Dupeux, M.: Failure initiation in an epoxy joint between two steel plates. Eur. J. Mech. A Solids 22(4), 509–524 (2003)

    Article  MATH  Google Scholar 

  122. Leguillon, D., Karnaeva, E., Baroni, A., Putot, C.: Tight sedimentary covers for \(\text{ CO }_2\) sequestration. Int. J. Fract. 184, 113–122 (2013)

    Article  Google Scholar 

  123. Leguillon, D., Haddad, O., Adamowska, M., da Costa, P.: Crack pattern formation and spalling in functionalized thin films. Proc. Mater. Sci. 3, 104–109 (2014)

    Article  Google Scholar 

  124. Leguillon, D., Martin, E., Ševeček, O., Bermejo, R.: Application of the coupled stress–energy criterion to predict the fracture behaviour of layered ceramics designed with internal compressive stresses. Eur. J. Mech. A Solids 54, 94–104 (2015)

    Article  MathSciNet  Google Scholar 

  125. Lenci, S.: Analysis of a crack at a weak interface. Int. J. Fract. 108(3), 275–290 (2001)

    Article  Google Scholar 

  126. Leonov, M.Y., Panasyuk, V.: Development of the smallest cracks in a solid. Prikl Mekh 5(4), 391–401 (1959)

    MathSciNet  Google Scholar 

  127. Li, J., Zhang, X.: A criterion study for non-singular stress concentrations in brittle or quasi-brittle materials. Eng. Fract. Mech. 73(4), 505–523 (2006)

    Article  Google Scholar 

  128. Li, X., Xu, L.: T-stress across static crack kinking. J. Appl. Mech. 74, 181–190 (2007)

    Article  MATH  Google Scholar 

  129. Li, Y.N., Bazant, Z.P.: Penetration fracture of ice plate: 2d analysis and size effect. J. Eng. Mech. 120(7), 1481–1498 (1994)

    Article  Google Scholar 

  130. Li, Y.N., Hong, A.P., Bažant, Z.P.: Initiation of parallel cracks from surface of elastic half-plane. Int. J. Fract. 69(4), 357–369 (1995)

    Article  Google Scholar 

  131. Liao, W., Sun, C.: The determination of mode III fracture toughness in thick composite laminates. Compos. Sci. Technol. 56(4), 489–499 (1996)

    Article  Google Scholar 

  132. Liu, C.H., Nairn, J.A.: Analytical and experimental methods for a fracture mechanics interpretation of the microbond test including the effects of friction and thermal stresses. Int. J. Adhes. Adhes. 19(1), 59–70 (1999)

    Article  Google Scholar 

  133. Mantič, V.: Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion. Int. J. Solids Struct. 46(6), 1287–1304 (2009)

    Article  MATH  Google Scholar 

  134. Mantič, V.: Prediction of initiation and growth of cracks in composites. Coupled stress and energy criterion of the Finite FractureMechanics. In: 16th European Conference on Composite Materials (ECCM-14),European Society of Composite Materials (ESCM)(2014)

  135. Mantič, V., García, I.: Crack onset and growth at the fibre-matrix interface under a remote biaxial transverse load. Application of a coupled stress and energy criterion. Int. J. Solids Struct. 49(17), 2273–2290 (2012)

    Article  Google Scholar 

  136. Martin, E., Leguillon, D.: Energetic conditions for interfacial failure in the vicinity of a matrix crack in brittle matrix composites. Int. J. Solids Struct. 41(24), 6937–6948 (2004)

    Article  MATH  Google Scholar 

  137. Martin, E., Poitou, B., Leguillon, D., Gatt, J.: Competition between deflection and penetration at an interface in the vicinity of a main crack. Int. J. Fract. 151(2), 247–268 (2008)

    Article  MATH  Google Scholar 

  138. Martin, E., Leguillon, D., Carrère, N.: A twofold strength and toughness criterion for the onset of free-edge shear delamination in angle-ply laminates. Int. J. Solids Struct. 47(9), 1297–1305 (2010)

    Article  MATH  Google Scholar 

  139. Martin, E., Leguillon, D., Carrère, N.: A coupled strength and toughness criterion for the prediction of the open hole tensile strength of a composite plate. Int. J. Solids Struct. 49(26), 3915–3922 (2012)

    Article  Google Scholar 

  140. Mayland, W., Becker, W.: Scaled boundary finite element analysis of stress singularities in piezoelectric multi-material systems. PAMM 9(1), 99–102 (2009)

    Article  Google Scholar 

  141. Maz’ya, V.G., Nazarov, S.A.: Asymptotic behavior of energy integrals under small perturbations of the boundary near corner and conic points. Trudy Moskovskogo Matematicheskogo Obshchestva 50, 79–129 (1987)

    MATH  Google Scholar 

  142. Mendoza-Navarro, L.E., Diaz-Diaz, A., Castañeda-Balderas, R., Hunkeler, S., Noret, R.: Interfacial failure in adhesive joints: experiments and predictions. Int. J. Adhes. Adhes. 44, 36–47 (2013)

    Article  Google Scholar 

  143. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  144. Mittelman, B., Yosibash, Z.: Asymptotic analysis of the potential energy difference because of crack at a V-notch edge in a 3D domain. Eng. Fract. Mech. 131, 232–256 (2014)

    Article  Google Scholar 

  145. Mittelstedt, C., Becker, W.: Interlaminar stress concentrations in layered structures: part I—a selective literature survey on the free-edge effect since 1967. J. Compos. Mater. 38(12), 1037–1062 (2004a)

    Article  Google Scholar 

  146. Mittelstedt, C., Becker, W.: A single-layer theory approach to stress concentration phenomena in layered plates. Compos. Sci. Technol. 64(10), 1737–1748 (2004b)

    Article  Google Scholar 

  147. Mittelstedt, C., Becker, W.: A variational finite layer technique for the investigation of thermally induced stress concentrations in composite structures. J. Therm. Stresses 27(10), 953–981 (2004c)

    Article  Google Scholar 

  148. Mittelstedt, C., Becker, W.: Fast and reliable analysis of free-edge stress fields in a thermally loaded composite strip by a layerwise laminate theory. Int. J. Numer. Methods Eng. 67(6), 747–770 (2006)

    Article  MATH  Google Scholar 

  149. Modniks, J., Spārniņš, E., Andersons, J., Becker, W.: Analysis of the effect of a stress raiser on the strength of a UD flax/epoxy composite in off-axis tension. J. Compos. Mater. 49(9), 1071–1080 (2014)

    Article  Google Scholar 

  150. Moradi, A., Carrère, N., Leguillon, D., Martin, E., Cognard, J.Y.: Strength prediction of bonded assemblies using a coupled criterion under elastic assumptions: Effect of material and geometrical parameters. Int. J. Adhes. Adhes. 47, 73–82 (2013a)

    Article  Google Scholar 

  151. Moradi, A., Leguillon, D., Carrère, N.: Influence of the adhesive thickness on a debonding—an asymptotic model. Eng. Fract. Mech. 114, 55–68 (2013b)

    Article  Google Scholar 

  152. Müller, A., Becker, W., Stolten, D., Hohe, J.: A hybrid method to assess interface debonding by finite fracture mechanics. Eng. Fract. Mech. 73(8), 994–1008 (2006)

    Article  Google Scholar 

  153. Murer, S., Leguillon, D.: Static and fatigue failure of quasi-brittle materiala at a V-notch using a Dugale model. Eur. J. Mech. A Solids 29, 109–118 (2010)

    Article  MathSciNet  Google Scholar 

  154. Nairn, J.A.: Matrix microcracking in composites. Polym. Matrix Compos. 2, 403–432 (2000)

    Google Scholar 

  155. Neto, J., Campilho, R., Da Silva, L.: Parametric study of adhesive joints with composites. Int. J. Adhes. Adhes. 37, 96–101 (2012)

    Article  Google Scholar 

  156. Neuber, H.: Elastisch-strenge Lösungen zur Kerbwirkung bei Scheiben und Umdrehungskörpern. ZAMM 13, 439 (1933)

    MATH  Google Scholar 

  157. Neuber, H.: Zur Theorie der Kerbwirkung bei Biegung und Schub. Ing. Arch. 5(3), 238–244 (1934)

    Article  MATH  Google Scholar 

  158. Neuber, H.: Kerbspannungslehre: Theorie der Spannungskonzentration. Genaue Berechnung der Festigkeit. Klassiker der Technik, Springer, Berlin (2000)

    Google Scholar 

  159. Novozhilov, V.: On a necessary and sufficient criterion for brittle strength. J. Appl. Math. Mech. 33(2), 201–210 (1969)

    Article  Google Scholar 

  160. Ogihara, S., Koyanagi, J.: Investigation of combined stress state failure criterion for glass fiber/epoxy interface by the cruciform specimen method. Compos. Sci. Technol. 70(1), 143–150 (2010)

    Article  Google Scholar 

  161. Ojalvo, I., Eidinoff, H.: Bond thickness effects upon stresses in single-lap adhesive joints. AIAA J. 16(3), 204–211 (1978)

    Article  Google Scholar 

  162. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Fluids Eng. 85(4), 528–533 (1963)

    Google Scholar 

  163. Parvizi, A., Garrett, K., Bailey, J.: Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates. J. Mater. Sci. 13(1), 195–201 (1978)

    Article  Google Scholar 

  164. Peterson, R., Wahl, A.: Two and three dimensional cases of stress concentration and comparison with fatigue tests. Trans. ASME 58, A15 (1936)

    Google Scholar 

  165. Picard, D., Leguillon, D., Putot, C.: A method to estimate the influence of the notch root radius on the fracture toughness of ceramics. J. Eur. Ceram. Soc. 26, 1421–1427 (2006)

    Article  Google Scholar 

  166. Pilkey, W., Pilkey, D.: Peterson’s Stress Concentration Factors. Wiley, Hoboken (2008)

    Google Scholar 

  167. Pipes, R.B., Pagano, N.: Interlaminar stresses in composite laminates under uniform axial extension. J. Compos. Mater. 4(4), 538–548 (1970)

    Google Scholar 

  168. Pugno, N., Ciavarella, M., Cornetti, P., Carpinteri, A.: A generalized Paris’ law for fatigue crack growth. J. Mech. Phys. Solids 54(7), 1333–1349 (2006)

    Article  MATH  Google Scholar 

  169. Pugno, N., Cornetti, P., Carpinteri, A.: New unified laws in fatigue: from the Wöhler’s to the Paris’ regime. Eng. Fract. Mech. 74(4), 595–601 (2007)

    Article  Google Scholar 

  170. Qian, Z., Akisanya, A.: An experimental investigation of failure initation in bonded joints. Acta Mater. 46, 4895–4904 (1998)

    Article  Google Scholar 

  171. Quesada, D., Leguillon, D., Putot, C.: Multiple failures in or around a stiff inclusion embedded in a soft matrix under a compressive loading. Eur. J. Mech. A. Solids 28(4), 668–679 (2009a)

    Article  MATH  Google Scholar 

  172. Quesada, D., Picard, D., Putot, C., Leguillon, D.: The role of the interbed thickness on the step-over fracture under overburden pressure. Int. J. Rock Mech. Min. Sci. 46(2), 281–288 (2009b)

    Article  Google Scholar 

  173. Rabinovitch, O.: An extended high order cohesive interface approach to the debonding analysis of FRP strengthened beams. Int. J. Mech. Sci. 81, 1–16 (2014)

    Article  Google Scholar 

  174. Reedy, E., Guess, T.: Comparison of butt tensile strength data with interface corner stress intensity factor prediction. Int. J. Solids Struct. 30(21), 2929–2936 (1993)

    Article  Google Scholar 

  175. Rice, J.: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55, 98–103 (1988)

    Article  Google Scholar 

  176. Romani, R., Bornert, M., Leguillon, D., Le Roy, R., Sab, K.: Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-Theoretical predictions based on a coupled criterion. Eur. J. Mech. A Solids 51, 172–182 (2015)

    Article  Google Scholar 

  177. Rosendahl, P., Weißgraeber, P., Stein, N., Becker, W.: Asymmetric crack onset at open-holes under tensile and in-plane bending loading. Int. J. Solids Struct. Manuscript in preparation (2016)

  178. Rybicki, E., Schmueser, D., Fox, J.: An energy release rate approach for stable crack growth in the free-edge delamination problem. J. Compos. Mater. 11(4), 470–487 (1977)

    Article  Google Scholar 

  179. Saeedi, N., Sab, K., Caron, J.F.: Delaminated multilayered plates under uniaxial extension. Part I: analytical analysis using a layerwise stress approach. Int. J. Solids Struct. 49(26), 3711–3726 (2012a)

    Article  Google Scholar 

  180. Saeedi, N., Sab, K., Caron, J.F.: Delaminated multilayered plates under uniaxial extension. Part II: efficient layerwise mesh strategy for the prediction of delamination onset. Int. J. Solids Struct. 49(26), 3727–3740 (2012b)

    Article  Google Scholar 

  181. Sapora, A., Cornetti, P., Carpinteri, A.: A Finite Fracture Mechanics approach to V-notched elements subjected to mixed-mode loading. Eng. Fract. Mech. 97, 216–226 (2013)

    Article  Google Scholar 

  182. Sator, C., Becker, W.: Closed-form solutions for stress singularities at plane bi-and trimaterial junctions. Arch. Appl. Mech. 82(5), 643–658 (2012)

    Article  MATH  Google Scholar 

  183. Schlüter, A., Willenbücher, A., Kuhn, C., Müller, R.: Phase field approximation of dynamic brittle fracture. Comput. Mech. 54(5), 1141–1161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  184. Seweryn, A.: Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 47(5), 673–681 (1994)

    Article  Google Scholar 

  185. Seweryn, A., Poskrobko, S., Mróz, Z.: Brittle fracture in plane elements with sharp notches under mixed-mode loading. J. Eng. Mech. 123(6), 535–543 (1997)

    Article  Google Scholar 

  186. Song, C.: A matrix function solution for the scaled boundary finite-element equation in statics. Comput. Methods Appl. Mech. Eng. 193(23), 2325–2356 (2004)

    Article  MATH  Google Scholar 

  187. Stein, N., Weißgraeber, P., Becker, W.: A model for brittle failure in adhesive lap joints of arbitrary joint configuration. Compos. Struct. 133, 707–718 (2015)

    Article  Google Scholar 

  188. Sun, Z., Ooi, E.T., Song, C.: Finite fracture mechanics analysis using the scaled boundary finite element method. Eng. Fract. Mech. 134, 330–353 (2015)

    Article  Google Scholar 

  189. Suresh, S.: Fatigue of Materials, 2nd edn. Cambridge University Press, Cambridge (1998a)

    Book  Google Scholar 

  190. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998b)

    Book  Google Scholar 

  191. Tada, H., Paris, P., Irwin, G.: The Stress Analysis of Cracks Handbook. Paris Productions Inc, Wilmington (1985)

    Google Scholar 

  192. Taylor, D.: The Theory of Critical Distances: A New Perspective in Fracture Mechanics. Elsevier Science, New York (2007)

    Google Scholar 

  193. Taylor, D., Cornetti, P., Pugno, N.: The fracture mechanics of finite crack extension. Eng. Fract. Mech. 72(7), 1021–1038 (2005)

    Article  Google Scholar 

  194. Theocaris, P.: The order of singularity at a multi-wedge corner of a composite plate. Int. J. Eng. Sci. 12(2), 107–120 (1974)

    Article  MATH  Google Scholar 

  195. Theocaris, P., Milios, J.: Crack-arrest at a bimaterial interface. Int. J. Solids Struct. 17(2), 217–230 (1981)

    Article  MATH  Google Scholar 

  196. Tran, V., Leguillon, D., Krishnan, A., Xu, L.: Interface crack initiation at V-notches along adhesive bonding in weakly bonded polymers subjected to mixed-mode loading. Int. J. Fract. 35(1), 1–15 (2012)

    Google Scholar 

  197. Tsai, M.Y., Oplinger, D., Morton, J.: Improved theoretical solutions for adhesive lap joints. Int. J. Solids Struct. 35(12), 1163–1185 (1998)

    Article  MATH  Google Scholar 

  198. Tvergaard, V.: Effect of fibre debonding in a whisker-reinforced metal. Mater. Sci. Eng. A 125(2), 203–213 (1990)

    Article  Google Scholar 

  199. Verhoosel, C.V., Borst, R.: A phase-field model for cohesive fracture. Int. J. Numer. Methods Eng. 96(1), 43–62 (2013)

    Article  Google Scholar 

  200. Vu-Quoc, L., Tran, V.: Singularity analysis and fracture energy-release rate for composites: piecewise homogeneous-anisotropic materials. Comput. Methods Appl. Mech. Eng. 195(37), 5162–5197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  201. Waddoups, M., Eisenmann, J., Kaminski, B.: Macroscopic fracture mechanics of advanced composite materials. J. Compos. Mater. 5(4), 446–454 (1971)

    Article  Google Scholar 

  202. Wang, S., Choi, I.: The Mechanics of Delamination in Fiber-Reinforced Composite Materials. Part 1. Stress Singularities and Solution Structure. Tech. rep., DTIC Document (1983)

  203. Weißgraeber, P., Becker, W.: A new Finite Fracture Mechanics approach for assessing the strength of bonded lap joints. Key Eng. Mater. 471, 1075–1080 (2011a)

    Article  Google Scholar 

  204. Weißgraeber, P., Becker, W.: Predicting effective strengths of bonded lap joints with a finite fracture mechanics criterion.In: Fæster, S., Jensen, D.J., Ralph, B., Sørensen, B. (eds.) Proceedings of the 32nd Risø International Symposium in Materials Science Composite Materials for Structural Performance: Towards higher Limits. Technical University of Denmark, pp 479–486 (2011b)

  205. Weißgraeber, P., Becker, W.: Finite Fracture Mechanics model for mixed mode fracture in adhesive joints. Int. J. Solids Struct. 50(14), 2383–2394 (2013)

    Article  Google Scholar 

  206. Weißgraeber, P., Stein, N., Becker, W.: A general sandwich-type model for adhesive joints with composite adherends. Int. J. Adhes. Adhes. 55, 56–63 (2014)

    Article  Google Scholar 

  207. Weißgraeber, P., Felger, J., l’Armée, A.T., Becker, W.: Crack initiation in single lap joints: effects of geometrical and material properties. Int. J. Fract. 192(2), 155–166 (2015a)

    Article  Google Scholar 

  208. Weißgraeber, P., Hell, S., Becker, W.: Crack nucleation in negative geometries. Eng. Fract. Mech. Under review (2015b)

  209. Weißgraeber, P., Felger, J., Geipel, D., Becker, W.: Cracks at elliptical holes: stress intensity factor and finite fracture mechanics solution. Eur. J. Mech. A Solids 55, 192–198 (2016)

    Article  Google Scholar 

  210. Westergaard, H.: Bearing pressures and cracks. J. Appl. Mech. 6, 49–53 (1939)

    Google Scholar 

  211. Whitney, J.M., Nuismer, R.: Stress fracture criteria for laminated composites containing stress concentrations. J. Compos. Mater. 8(3), 253–265 (1974)

    Article  Google Scholar 

  212. Wieghardt, K.: Über das Spalten und Zerreißen elastischer Körper. Z Mathematik und Physik 55(2), 60–103 (1907)

    MATH  Google Scholar 

  213. Williams, M.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19(4), 526–528 (1952)

    Google Scholar 

  214. Wolf, J.P.: The Scaled Boundary Finite Element Method. John Wiley & Sons Inc, Hoboken (2003)

    Google Scholar 

  215. Xu, B.X., Schrade, D., Gross, D., Mueller, R.: Phase field simulation of domain structures in cracked ferroelectrics. Int. J. Fract. 165(2), 163–173 (2010)

    Article  MATH  Google Scholar 

  216. Xu, L.R., Huang, Y.Y., Rosakis, A.J.: Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions. J. Mech. Phys. Solids 51(3), 461–486 (2003)

    Article  MATH  Google Scholar 

  217. Yosibash, Z., Priel, E., Leguillon, D.: A failure criterion for brittle elastic materials under mixed-mode loading. Int. J. Fract. 141(1–2), 291–312 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Becker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weißgraeber, P., Leguillon, D. & Becker, W. A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers. Arch Appl Mech 86, 375–401 (2016). https://doi.org/10.1007/s00419-015-1091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1091-7

Keywords

Navigation