Skip to main content
Log in

Vibration analysis of coupled bending-torsional rotor-bearing system for hydraulic generating set with rub-impact under electromagnetic excitation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on Jeffcott rotor model, the coupled bending-torsional rotor-bearing system with rub-impact under electromagnetic excitation for hydraulic generating set is established and the corresponding equation is given. The influence of excitation current, mass eccentricity and electromagnetic torque in the system is investigated by taking use of numerical method. The simulation results show that eccentricity is the crucial factor causing the changes of system dynamic characteristics, compared to the effect of torsional degree of freedom. And the larger the eccentricity is, the more obviously it affects the system responses. While the complicated dynamic behavior of bending vibration response can be restrained, due to the introduction of torsion motion, which has the property to suppress complex dynamic response of system, particularly, the inhibited and improved effect is more evident, as the eccentricity turns to be smaller. In addition, the unstable jumping phenomena of torsional response can be motivated by electromagnetic torque, which has to be taken seriously during the process of model establishment and dynamic analysis of system. From the global view of electromechanical coupling characteristics, the coupled bending-torsional vibration model with rub-impact under electromagnetic excitation can supply a more comprehensive reflection about the dynamic characteristics of system and provide useful reference with system state recognition and fault diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Beatty, R.F.: Differentiating rotor response due to radial rubbing. J. Vib. Acoust. Stress Reliab. Des. 107(2), 151–160 (1985)

    Article  Google Scholar 

  2. Chu, F., Zhang, Z.: Bifurcation and chaos in a rub-impact Jeffcott rotor system. J. Sound Vib. 210(1), 1–18 (1998)

    Article  Google Scholar 

  3. Feng, Z.C., Zhang, X.Z.: Rubbing phenomena in rotor–stator contact. Chaos Solitons Fractals 14(2), 257–267 (2002)

    Article  MATH  Google Scholar 

  4. Zhang, W., Meng, G.: Stability, bifurcation and chaos of a high-speed rub-impact rotor system in MEMS. Sens. Actuators A 127(1), 163–178 (2006)

    Article  MathSciNet  Google Scholar 

  5. Shen, X., Jia, J., Zhao, M.: Numerical analysis of a rub-impact rotor-bearing system with mass unbalance. J. Vib. Control 13(12), 1819–1834 (2007)

    Article  MATH  Google Scholar 

  6. Chang-Jian, C., Chen, C.: Chaos of rub-impact rotor supported by bearings with nonlinear suspension. Tribol. Int. 42(3), 426–439 (2009)

    Article  Google Scholar 

  7. Cao, J., Ma, C., Jiang, Z., et al.: Nonlinear dynamic analysis of fractional order rub-impact rotor system. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1443–1463 (2011)

    Article  Google Scholar 

  8. Litak, G., Sawicki, J.T.: Regular and chaotic vibrations in the rub impact model of a Jeffcott rotor with a fractional restore force. Eur. Phys. J. Appl. Phys. 64(3), 93–96 (2013)

    Article  Google Scholar 

  9. Varney, P., Green, I.: Nonlinear phenomena, bifurcations, and routes to chaos in an asymmetrically supported rotor-stator contact system. J. Sound Vib. 336(3), 207–226 (2015)

    Article  Google Scholar 

  10. Piccoli, H.C., Weber, H.I.: Experimental observation of chaotic motion in a rotor with rubbing. Nonlinear Dyn. 16(1), 55–70 (1998)

    Article  MATH  Google Scholar 

  11. An, X., Zhou, J., Xiang, X., et al.: Dynamic response of a rub-impact rotor system under axial thrust. Arch. Appl. Mech. 79(11), 1009–1018 (2009)

    Article  MATH  Google Scholar 

  12. Gustavsson, R.K., Aidanpää, J.O.: Evaluation of impact dynamics and contact forces in a hydropower rotor due to variations in damping and lateral fluid forces. Int. J. Mech. Sci. 51(9–10), 653–661 (2009)

    Article  Google Scholar 

  13. Huang, Z., Zhou, J., Yang, M., et al.: Vibration characteristics of a hydraulic generator unit rotor system with parallel misalignment and rub-impact. Arch. Appl. Mech. 81(7), 829–838 (2011)

    Article  MATH  Google Scholar 

  14. Zhang, L., Ma, Z., Song, B.: Dynamic characteristics of a rub-impact rotor-bearing system for hydraulic generating set under unbalanced magnetic pull. Arch. Appl. Mech. 83(6), 817–830 (2013)

    Article  MATH  Google Scholar 

  15. Ahmad, S.: Rotor casing contact phenomenon in rotor dynamics—literature survey. J. Vib. Control 16(9), 1369–1377 (2010)

    Article  Google Scholar 

  16. Edwards, S., Lees, A.W., Friswell, M.I.: The influence of torsion on rotor/stator contact in rotating machinery. J. Sound Vib. 225(4), 767–778 (1999)

    Article  Google Scholar 

  17. Al-Bedoor, B.O.: Transient torsional and lateral vibrations of unbalanced rotors with rotor-to-stator rubbing. J. Sound Vib. 229(3), 627–645 (2000)

    Article  Google Scholar 

  18. Sun, Z., Xu, J., Zhou, T., et al.: Study on influence of bending-torsion coupling in an impacting-rub rotor system. Appl. Math. Mech. 24(11), 1316–1323 (2003)

    Article  Google Scholar 

  19. Yuan, Z., Wang, S., Yue, X., et al.: Dynamic analysis of rotor’s radial rub-impact in full degrees of freedom accounting for turborotor’s non-linear clearance-excitation force. P. I. Mech. Eng. C J. Mech. 222(9), 1647–1653 (2008)

    Article  Google Scholar 

  20. Patel, T.H., Zuo, M.J., Zhao, X.: Nonlinear lateral-torsional coupled motion of a rotor contacting a viscoelastically suspended stator. Nonlinear Dyn. 69(1–2), 325–339 (2012)

    Article  Google Scholar 

  21. Khanlo, H.M., Ghayour, M., Ziaei-Rad, S.: The effects of lateral-torsional coupling on the nonlinear dynamic behavior of a rotating continuous flexible shaft-disk system with rub-impact. Commun. Nonlinear Sci. Numer. Simul. 18(6), 1524–1538 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hua, C.L., Ta, N., Rao, Z.S.: Influence of damping ratio on coupled bending and torsion vibrations of rotor system under rub-impact. J. Vib. Shock 33(13), 19–25 (2014)

    Google Scholar 

  23. Ma, H., Yin, F., Wu, Z., et al.: Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2564-5

  24. Cameron, J.R., Thomson, W.T., Dow, A.B.: Vibration and current monitoring for detecting airgap eccentricity in large induction motors. IEE Proc. B Electr. Power Appl. 133(3), 155–163 (1986)

    Article  Google Scholar 

  25. Xu, J.Y., Liu, J.P., Song, Y.M., et al.: Torsional vibration analysis of hydrogenerators considering electromagnetic excitation. J. Tianjin Univ. 41(12), 1411–1416 (2008)

    Google Scholar 

  26. Yang, Z.A., Li, W.L., Qiu, J.J.: Lateral and torsional coupling vibration excited by electromagnetism of turbogenerator set rotor system. J. Tianjin Univ. 41(5), 583–588 (2008)

    Google Scholar 

  27. Song, Z.Q., Ma, Z.Y.: Analysis on torsional vibrations of hydro generator shaft system considering hydraulic and electromagnetic excitations. J. Hydroelectr. Eng. 31(3), 240–245 (2012)

    Google Scholar 

  28. Song, Z.Q., Liu, Y.H.: Investigation of bending-torsional coupled vibration of hydro generators rotor-bearing system considering electromagnetic stiffness. J. Hydroelectr. Eng. 33(6), 224–231 (2014)

    Google Scholar 

  29. Ma, Z.Y., Dong, Y.X.: Dynamics of Water Turbine Generator Set. Dalian University of Technology Press, Dalian (2003)

    Google Scholar 

  30. Guo, D., Chu, F., Chen, D.: The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor. J. Sound Vib. 254(2), 297–312 (2002)

    Article  Google Scholar 

  31. Jordan, H., Schroeder, R.D., Seinsch, H.O.: Zur Berechnung einseitigmagnetischer Zugkräfte in Drehfeldmaschienen. Archiv Fur Elektrotechnik 63(2), 117–124 (1981)

    Article  Google Scholar 

  32. Qiu, J.J.: Analytical Dynamics of Electromechanical Systems. Science Press, Beijing (1992)

    Google Scholar 

  33. Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10(3), 251–269 (1996)

    Article  Google Scholar 

  34. Pollock, G.B., Lyles, J.F.: Vertical hydraulic generators experience with dynamic air gap monitoring. IEEE Trans. Energy Convers. 7(4), 660–668 (1992)

    Article  Google Scholar 

  35. Weng, Y.G.: Rectification of rotor eccentricity for hydrogenerator. Large Electr. Mach. Hydraul. Turbine 1, 4–7 (1999)

    Google Scholar 

  36. Hsieh, S., Chen, J., Lee, A.: A modified transfer matrix method for the coupling lateral and torsional vibrations of symmetric rotor-bearing systems. J. Sound Vib. 289(1–2), 294–333 (2006)

    Article  Google Scholar 

  37. Mihajlović, N., van de Wouw, N., Rosielle, P.C.J.N., et al.: Interaction between torsional and lateral vibrations in flexible rotor systems with discontinuous friction. Nonlinear Dyn. 50(3), 679–699 (2007)

    Article  MATH  Google Scholar 

  38. Yuan, Z., Chu, F., Lin, Y.: External and internal coupling effects of rotor’s bending and torsional vibrations under unbalances. J. Sound Vib. 299(1–2), 339–347 (2007)

    Article  Google Scholar 

  39. Shen, X.Y., Jia, J.H., Zhao, M., et al.: Coupled torsional-lateral vibration of the unbalanced rotor system with external excitations. J. Strain Anal. Eng. Des. 42(6), 423–431 (2007)

    Article  Google Scholar 

  40. Wang, S., Guo, W., Xu, X., et al.: Modeling unbalanced rotor system with continuous viscoelastic shaft by frequency-dependent shape function. J. Cent. South Univ. 20(12), 3421–3430 (2013)

    Article  Google Scholar 

  41. Cao, J., Allaire, P., Dimond, T.: Coupled lateral and torsional nonlinear transient rotor-bearing system analysis with applications. J. Dyn. Syst. Meas. Contr. 137(9), 091011–091011-9 (2015)

    Article  Google Scholar 

  42. Negru, R., Muntean, S., Pasca, N., et al.: Failure assessment of the shaft of a pumped storage unit. Fatigue Fract. Eng. Mater. Struct. 37(7), 807–820 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research paper is supported by the National Natural Science Foundation of China (Grant No. 51379030) and Youth Foundation of Taiyuan University of Technology (Grant No. 2015QN029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leike Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ma, Z., Wu, Q. et al. Vibration analysis of coupled bending-torsional rotor-bearing system for hydraulic generating set with rub-impact under electromagnetic excitation. Arch Appl Mech 86, 1665–1679 (2016). https://doi.org/10.1007/s00419-016-1142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1142-8

Keywords

Navigation