Skip to main content
Log in

Vibration of nonlinear bolted lap-jointed beams using Timoshenko theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the vibrational behavior of a system which consists of two free–free Timoshenko beams interconnected by a nonlinear joint. To model the bolted lap joint interface, a combination of the linear translational spring, linear and nonlinear torsional springs, and a linear torsional damper is used. The governing equations of motion are derived using the Euler–Lagrange equations. The reduced-order model equations are obtained based on Galerkin method. The set of coupled nonlinear equations are then analytically solved using the harmonic balance approach and numerical simulation. A parametric study is carried out to reveal the influence of different parameters such as linear and nonlinear torsional spring, linear translational spring, and linear torsional damper on the vibration and stability of the bolted lap joint structure. It is shown that the effect of the nonlinear torsional spring on the response of the system is significant. Interestingly, it is observed that in the presence of the nonlinear spring the softening behavior could be changed to hardening behavior. In addition, the effects of the different engineering beam theories on the modeling of the substructures are studied and it is observed that considering the effect of the rotary inertia and shear deformations is significant. In addition, it is observed that neglecting each of them can yield completely wrong interpretations of the system behavior and incorrect results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ibrahim, R., Pettit, C.: Uncertainties and dynamic problems of bolted joints and other fasteners. J. Sound Vib. 279, 857–936 (2005)

    Article  Google Scholar 

  2. Ahmadian, H., Jalali, H.: Identification of bolted lap joints parameters in assembled structures. Mech. Syst. Signal Process. 21, 1041–1050 (2007)

    Article  Google Scholar 

  3. Ahmadian, H., Jalali, H.: Generic element formulation for modelling bolted lap joints. Mech. Syst. Signal Process. 21, 2318–2334 (2007)

    Article  Google Scholar 

  4. Ma, X., Bergman, L., Vakakis, A.: Identification of bolted joints through laser vibrometry. J. Sound Vib. 246, 441–460 (2001)

    Article  Google Scholar 

  5. Jalali, H., Ahmadian, H., Mottershead, J.E.: Identification of nonlinear bolted lap-joint parameters by force-state mapping. Int. J. Solids Struct. 44, 8087–8105 (2007)

    Article  MATH  Google Scholar 

  6. Guo, T., Li, L., Cai, L., Zhao, Y.: Alternative method for identification of the dynamic properties of bolted joints. J. Mech. Sci. Technol. 26, 3017–3027 (2012)

    Article  Google Scholar 

  7. Sanati, M., Alammari, Y., Ko, J., Park, S.: Identification of joint dynamics in lap joints. Arch. Appl. Mech. 87, 99–113 (2017)

    Article  Google Scholar 

  8. Reid, J.D., Hiser, N.R.: Detailed modeling of bolted joints with slippage. Finite Elem. Anal. Des. 41, 547–562 (2005)

    Article  Google Scholar 

  9. Saxena, M., Tripathi, K., Kanchwala, H.: Investigation of dynamic response of bolted joint test rig under free vibrations using FEA. Int. J. Appl. Eng. Res. 7, 1359–1370 (2012)

    Google Scholar 

  10. Shokrollahi, S., Adel, F.: Finite element model updating of bolted lap joints implementing identification of joint affected region parameters. J. Theor. Appl. Vib. Acoust. 2, 65–78 (2016)

    Google Scholar 

  11. Kim, J., Yoon, J.-C., Kang, B.-S.: Finite element analysis and modeling of structure with bolted joints. Appl. Math. Model. 31, 895–911 (2007)

    Article  MATH  Google Scholar 

  12. Hong, S.-W., Lee, C.-W.: Identification of linearised joint structural parameters by combined use of measured and computed frequency responses. Mech. Syst. Signal Process. 5, 267–277 (1991)

    Article  Google Scholar 

  13. Ertürk, A., Özgüven, H., Budak, E.: Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF. Int. J. Mach. Tools Manuf. 46, 1901–1912 (2006)

    Article  Google Scholar 

  14. Mehrpouya, M., Graham, E., Park, S.S.: Identification of multiple joint dynamics using the inverse receptance coupling method. J. Vib. Control 21, 3431–3449 (2015)

    Article  Google Scholar 

  15. Liao, X., Zhang, J.: Energy balancing method to identify nonlinear damping of bolted-joint interface. Key Eng. Mater. 693, 318–323 (2016)

    Article  Google Scholar 

  16. Chatterjee, A., Vyas, N.S.: Non-linear parameter estimation with Volterra series using the method of recursive iteration through harmonic probing. J. Sound Vib. 268, 657–678 (2003)

    Article  Google Scholar 

  17. Chatterjee, A., Vyas, N.S.: Non-linear parameter estimation in multi-degree-of-freedom systems using multi-input Volterra series. Mech. Syst. Signal Process. 18, 457–489 (2004)

    Article  Google Scholar 

  18. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Nonlinear system identification in structural dynamics: current status and future directions. In: 25th International Modal Analysis Conference, Orlando (2007)

  19. Thothadri, M., Moon, F.: Nonlinear system identification of systems with periodic limit-cycle response. Nonlinear Dyn. 39, 63–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thothadri, M., Casas, R., Moon, F., D’andrea, R., Johnson Jr., C.: Nonlinear system identification of multi-degree-of-freedom systems. Nonlinear Dyn. 32, 307–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hajj, M., Fung, J., Nayfeh, A., Fahey, S.F.: Damping identification using perturbation techniques and higher-order spectra. Nonlinear Dyn. 23, 189–203 (2000)

    Article  MATH  Google Scholar 

  22. Noël, J.-P., Kerschen, G.: 10 years of advances in nonlinear system identification in structural dynamics: a review. In: Proceedings of ISMA 2016-International Conference on Noise and Vibration Engineering (2016)

  23. Di Maio, D.: Identification of dynamic nonlinearities of bolted structures using strain analysis. Nonlinear Dyn. 1, 387–414 (2016)

    Google Scholar 

  24. Ahmadian, H., Azizi, H.: Stability analysis of a nonlinear jointed beam under distributed follower force. J. Vib. Control 17, 27–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jahani, K., Nobari, A.: Identification of dynamic (Young’s and shear) moduli of a structural adhesive using modal based direct model updating method. Exp. Mech. 48, 599–611 (2008)

    Article  Google Scholar 

  26. Li, W.L.: A new method for structural model updating and joint stiffness identification. Mech. Syst. Signal Process. 16, 155–167 (2002)

    Article  Google Scholar 

  27. Ratcliffe, M., Lieven, N.: A generic element-based method for joint identification. Mech. Syst. Signal Process. 14, 3–28 (2000)

    Article  Google Scholar 

  28. Wang, J., Chuang, S.: Reducing errors in the identification of structural joint parameters using error functions. J. Sound Vib. 273, 295–316 (2004)

    Article  Google Scholar 

  29. Segalman, D.J., Paez, T., Smallwood, D., Sumali, A., Urbina, A.: Status and integrated road-map for joints modeling research. Sandia National Laboratories, SAND2003-0897 (2003)

  30. Liu, W., Ewins, D.: Substructure synthesis via elastic media. J. Sound Vib. 257, 361–379 (2002)

    Article  Google Scholar 

  31. Ren, Y., Beards, C.: Identification of ’effective’ linear joints using coupling and joint identification techniques. J. Vib. Acoust. 120, 331–338 (1998)

    Article  Google Scholar 

  32. Oldfield, M., Ouyang, H., Mottershead, J.E.: Simplified models of bolted joints under harmonic loading. Comput. Struct. 84, 25–33 (2005)

    Article  Google Scholar 

  33. Ouyang, H., Oldfield, M., Mottershead, J.: Experimental and theoretical studies of a bolted joint excited by a torsional dynamic load. Int. J. Mech. Sci. 48, 1447–1455 (2006)

    Article  Google Scholar 

  34. Magnevall, M., Josefsson, A., Ahlin, K.: Parameter estimation of hysteresis elements using harmonic input. In: IMAC XXV (2007)

  35. Boeswald, M., Link, M.: Identification of non-linear joint parameters by using frequency response residuals. In: Proceedings of the 2004 International Conference on Noise and Vibration Engineering (ISMA2004), Leuven, Belgium, September (2004)

  36. Dietl, J.M., Wickenheiser, A.M., Garcia, E.: A Timoshenko beam model for cantilevered piezoelectric energy harvesters. Smart Materials and Structures 19, Paper No. 055018 (2010)

  37. Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007)

    Google Scholar 

  38. Stanton, S.C., Erturk, A., Mann, B.P., Dowell, E.H., Inman, D.J.: Nonlinear nonconservative behavior ansd modeling of piezoelectric energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 23, 183–199 (2012)

    Article  Google Scholar 

  39. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  40. Ghayesh, M.H., Amabili, M., Farokhi, H.: Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int. J. Eng. Sci. 71, 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Firoozy, P., Khadem, S.E., Pourkiaee, S.M.: Power enhancement of broadband piezoelectric energy harvesting using a proof mass and nonlinearities in curvature and inertia. Int. J. Mech. Sci. 133, 227–239 (2017)

    Article  Google Scholar 

  42. Firoozy, P., Khadem, S.E., Pourkiaee, S.M.: Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int. J. Eng. Sci. 111, 113–133 (2017)

    Article  MathSciNet  Google Scholar 

  43. Rezaei, M., Khadem, S.E., Firoozy, P.: Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects. Int. J. Eng. Sci. 118, 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  44. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)

    Article  MATH  Google Scholar 

  45. Bab, S., Khadem, S.E., Shahgholi, M.: Lateral vibration attenuation of a rotor under mass eccentricity force using non-linear energy sink. Int. J. Non Linear Mech. 67, 251–266 (2014)

    Article  Google Scholar 

  46. Ansari, R., Ramezannezhad, H.: Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Physica E 43, 1171–1178 (2011)

    Article  Google Scholar 

  47. Jamal-Omidi, M., ShayanMehr, M., Shokrollahi, S., Rafiee, R.: A study on nonlinear vibration behavior of CNT-based representative volume element. Aerosp. Sci. Technol. 55, 272–281 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Jamal-Omidi.

Appendices

Appendix A

$$\begin{aligned} N_1= & {} \int _0^{L_{b1} } \left( {\varphi _1 \left( s \right) } \right) ^{2}\mathrm{d}s \end{aligned}$$
(A.1)
$$\begin{aligned} N_2= & {} \int _0^{L_{b1} } \left( {\varphi _2 \left( s \right) } \right) ^{2}\mathrm{d}s \end{aligned}$$
(A.2)
$$\begin{aligned} N_3= & {} \int _{\frac{L_t }{2}}^{L_t } \left( {\varphi _3 \left( s \right) } \right) ^{2}\mathrm{d}s \end{aligned}$$
(A.3)
$$\begin{aligned} N_4= & {} \int \nolimits _{\frac{L_t }{2}}^{L_t } \left( {\varphi _4 \left( s \right) } \right) ^{2}\mathrm{d}s \end{aligned}$$
(A.4)
$$\begin{aligned} N_5= & {} \varphi _3 \left( {L_t } \right) \end{aligned}$$
(A.5)
$$\begin{aligned} N_6= & {} \varphi _3 ^{{\prime }}\left( {L_t } \right) \end{aligned}$$
(A.6)
$$\begin{aligned} N_7= & {} \int _0^{L_{b1} } (\varphi _1 ^{{\prime }}\left( s \right) )^{2}\mathrm{d}s \end{aligned}$$
(A.7)
$$\begin{aligned} N_8= & {} \frac{1}{2}E_{b1} I_{b1} \int \nolimits _0^{L_{b1} } (\varphi _1 ^{{\prime }}\left( s \right) )^{2}\mathrm{d}s \end{aligned}$$
(A.8)
$$\begin{aligned} N_9= & {} \int _{\frac{L_t }{2}}^{L_t } (\varphi _3 ^{{\prime }}\left( s \right) )^{2}\mathrm{d}s \end{aligned}$$
(A.9)
$$\begin{aligned} N_{10}= & {} \frac{1}{2}E_{b2} I_{b2} \int \nolimits _{\frac{L_t }{2}}^{L_t } (\varphi _3 ^{{\prime }}\left( s \right) )^{2}\mathrm{d}s \end{aligned}$$
(A.10)
$$\begin{aligned} N_{11}= & {} \frac{1}{3}\int \nolimits _{\frac{L_t }{2}}^{L_t } (\varphi _3 ^{{\prime }}\left( s \right) )^{4}\mathrm{d}s \end{aligned}$$
(A.11)
$$\begin{aligned} N_{12}= & {} \int \nolimits _{\frac{L_t }{2}}^{L_t } \varphi _3 \left( s \right) \mathrm{d}s \end{aligned}$$
(A.12)
$$\begin{aligned} N_{13}= & {} \int \nolimits _0^{L_{b1} } \varphi _1 ^{{\prime }}\left( s \right) \varphi _2 \left( s \right) \mathrm{d}s \end{aligned}$$
(A.13)
$$\begin{aligned} N_{14}= & {} \int \nolimits _0^{L_{b1} } \varphi _1 \left( s \right) \mathrm{d}s \end{aligned}$$
(A.14)
$$\begin{aligned} N_{15}= & {} \varphi _3 ^{{\prime }}\left( S \right) \end{aligned}$$
(A.15)
$$\begin{aligned} N_{16}= & {} \varphi _1 ^{{\prime }}\left( S \right) \end{aligned}$$
(A.16)
$$\begin{aligned} N_{17}= & {} \varphi _1 \left( S \right) \end{aligned}$$
(A.17)
$$\begin{aligned} N_{18}= & {} \varphi _3 \left( S \right) \end{aligned}$$
(A.18)
$$\begin{aligned} N_{19}= & {} \frac{1}{2}E_{b1} A_{b1} \int _0^{L_{b1} } (\varphi _1 ^{{\prime }}\left( s \right) )^{4}\mathrm{d}s \end{aligned}$$
(A.19)

Appendix B

$$\begin{aligned} A_1= & {} \rho _{b1} A_{b1} N_1 \end{aligned}$$
(B.1)
$$\begin{aligned} A_2= & {} cN_{15} N_{16} \end{aligned}$$
(B.2)
$$\begin{aligned} A_3= & {} cN_{16} ^{2} \end{aligned}$$
(B.3)
$$\begin{aligned} A_4= & {} -k_{\theta NL} N_{16} ^{4}+N_{19} \end{aligned}$$
(B.4)
$$\begin{aligned} A_5= & {} 3k_{\theta NL} N_{15} N_{16} ^{3} \end{aligned}$$
(B.5)
$$\begin{aligned} A_6= & {} k_{\theta NL} N_{16} N_{15} ^{3} \end{aligned}$$
(B.6)
$$\begin{aligned} A_7= & {} 3k_{\theta NL} N_{16} ^{2}N_{15} ^{2} \end{aligned}$$
(B.7)
$$\begin{aligned} A_8= & {} k_{aL} N_{18} N_{17} +k_{\theta L} N_{15} N_{16} \end{aligned}$$
(B.8)
$$\begin{aligned} A_9= & {} k_1 ^{{\prime }}G_1 A_{b1} N_{13} \end{aligned}$$
(B.9)
$$\begin{aligned} A_{10}= & {} k_1 ^{{\prime }}G_1 A_{b1} N_7 +k_{aL} N_{17} ^{2}+k_{\theta L} N_{16} ^{2} \end{aligned}$$
(B.10)
$$\begin{aligned} A_{11}= & {} \rho _{b1} gN_{14} \end{aligned}$$
(B.11)
$$\begin{aligned} A_{12}= & {} J_1 N_2 \end{aligned}$$
(B.12)
$$\begin{aligned} A_{13}= & {} k_1 ^{{\prime }}G_1 A_{b1} N_2 +2N_8 \end{aligned}$$
(B.13)
$$\begin{aligned} A_{14}= & {} M_t \left( {N_5 +\frac{h_1 }{2}N_6 } \right) ^{2}+I_M N_6 ^{2} \end{aligned}$$
(B.14)
$$\begin{aligned} A_{15}= & {} cN_{15} ^{2} \end{aligned}$$
(B.15)
$$\begin{aligned} A_{16}= & {} -k_{\theta NL} N_{15} ^{4}+N_{16} \end{aligned}$$
(B.16)
$$\begin{aligned} A_{17}= & {} 3k_{\theta NL} N_{16} N_{15} ^{3} \end{aligned}$$
(B.17)
$$\begin{aligned} A_{18}= & {} k_{\theta NL} N_{15} N_{16} ^{3} \end{aligned}$$
(B.18)
$$\begin{aligned} A_{19}= & {} k_2 ^{{\prime }}G_2 A_{b2} N_{19} \end{aligned}$$
(B.19)
$$\begin{aligned} A_{20}= & {} k_2 ^{{\prime }}G_2 A_{b2} N_9 +k_{aL} N_{17} ^{2}+k_{\theta L} N_{16} ^{2} \end{aligned}$$
(B.20)
$$\begin{aligned} A_{21}= & {} \rho _{b2} gN_{12} \end{aligned}$$
(B.21)
$$\begin{aligned} A_{22}= & {} N_{19} \end{aligned}$$
(B.22)
$$\begin{aligned} A_{23}= & {} J_2 N_4 \end{aligned}$$
(B.23)
$$\begin{aligned} A_{24}= & {} k_2 ^{{\prime }}G_2 A_{b2} N_4 +2N_{10} \end{aligned}$$
(B.24)

Appendix C

$$\begin{aligned} a_1= & {} \frac{A_4 }{A_1 } \end{aligned}$$
(C.1)
$$\begin{aligned} a_2= & {} \frac{A_5 }{A_1 } \end{aligned}$$
(C.2)
$$\begin{aligned} a_3= & {} \frac{A_6 }{A_1 } \end{aligned}$$
(C.3)
$$\begin{aligned} a_4= & {} \frac{A_7 }{A_1 } \end{aligned}$$
(C.4)
$$\begin{aligned} a_5= & {} \frac{A_8 }{A_1 } \end{aligned}$$
(C.5)
$$\begin{aligned} a_6= & {} \frac{A_9 }{A_1 } \end{aligned}$$
(C.6)
$$\begin{aligned} a_7= & {} \frac{A_{10} }{A_1 } \end{aligned}$$
(C.7)
$$\begin{aligned} a_8= & {} \frac{A_{11} }{A_1 } \end{aligned}$$
(C.8)
$$\begin{aligned} a_9= & {} \frac{A_{13} }{A_{12} } \end{aligned}$$
(C.9)
$$\begin{aligned} a_{10}= & {} \frac{A_9 }{A_{12} } \end{aligned}$$
(C.10)
$$\begin{aligned} a_{11}= & {} \frac{A_{16} }{A_{14} } \end{aligned}$$
(C.11)
$$\begin{aligned} a_{12}= & {} \frac{A_{17} }{A_{14} } \end{aligned}$$
(C.12)
$$\begin{aligned} a_{13}= & {} \frac{A_{18} }{A_{14} } \end{aligned}$$
(C.13)
$$\begin{aligned} a_{14}= & {} \frac{A_7 }{A_{14} } \end{aligned}$$
(C.14)
$$\begin{aligned} a_{15}= & {} \frac{A_8 }{A_{14} } \end{aligned}$$
(C.15)
$$\begin{aligned} a_{16}= & {} \frac{A_{19} }{A_{14} } \end{aligned}$$
(C.16)
$$\begin{aligned} a_{17}= & {} \frac{A_{20} }{A_{14} } \end{aligned}$$
(C.17)
$$\begin{aligned} a_{18}= & {} \frac{A_{21} }{A_{14} } \end{aligned}$$
(C.18)
$$\begin{aligned} a_{19}= & {} \frac{A_{22} }{A_{14} } \end{aligned}$$
(C.19)
$$\begin{aligned} a_{20}= & {} \frac{A_{24} }{A_{23} } \end{aligned}$$
(C.20)
$$\begin{aligned} a_{21}= & {} \frac{A_{19} }{A_{23} } \end{aligned}$$
(C.21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adel, F., Jamal-Omidi, M. Vibration of nonlinear bolted lap-jointed beams using Timoshenko theory. Arch Appl Mech 88, 981–997 (2018). https://doi.org/10.1007/s00419-018-1353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1353-2

Keywords

Navigation