Skip to main content
Log in

Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present study, a continuous-based thermo-electromechanic model has been developed by the Kirchhoff plate’s theory and the modified flexoelectric theory in order to study the size-dependent nonlinear free vibration of functionally graded flexoelectric nano-plate under the magnetic field. Using the Hamilton’s principle and variation method, the nonlinear governing differential equations of the nano-plate and their associated boundary conditions have been extracted and the governing equations solved by using Galerkin’s and perturbation methods. The electromechanical coupling (electromechanical stress) in the internal energy function causes nonlinearity in the governing equations. The applied magnetic field is a type of external static field along with the nano-plate thickness. The natural frequencies and related mode shapes have been determined in two modes of direct and inverse flexoelectric effects. Also, the effects of such factors as length scale parameters, geometric parameters, thermal, magnetic and electrical loadings were investigated. In the presence of flexoelectric effect, the results showed that the dependence of electromechanical behavior of the structure on size is found to be significant in nanoscales. Regarding the application of this type of nano-plate in the oscillators and considering the flexoelectric effect, the applied potential difference can play an important role in adjusting and controlling the frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Van Den Boomgaard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)

    Google Scholar 

  2. Buchanan George, R.: Layered versus multiphase magneto-electro-elastic composites. Compos. B 35(5), 413–420 (2004)

    Google Scholar 

  3. Pan, E.: Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates. ASME J. Appl. Mech. 68(4), 608–618 (2001)

    MATH  Google Scholar 

  4. Heyliger, P.R., Ramirez, F., Pan, E.: Two-dimensional static fields in magnetoelectroelastic laminates. J. Intel. Mat. Syst. Struct. 15(9), 689–709 (2004)

    Google Scholar 

  5. Van Den Boomgaard, J., Dan Run, A.M.J.G., Van Suchtelen, J.: Magnetoelectricity in piezoelectric-magnetostrictive composites. Ferroelectrics 10(1), 295–298 (1976)

    Google Scholar 

  6. Van Den Boomgaard, J., Born, R.A.J.: A sintered magnetoelectric composite material BaTiO3-Ni (Co, Mn) Fe3O4. J. Mater. Sci. 13(7), 1538–1548 (1978)

    Google Scholar 

  7. Lopatin, S., Lopatin, I., Lisnevskaya, I.: Magnetoelectric PZT/ferrite composite material. Ferroelectrics 162(1), 63–68 (1994)

    Google Scholar 

  8. Srinivasan, G., Rasmussen, E.T., Levin, B.J., Hayes, R.: Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B. 65(13), 1–7 (2002)

    Google Scholar 

  9. Alessandroni, S., Andreaus, U., dell’Isola, F., Porfiri, M.: Piezo-electro-mechanical (PEM) Kirchhoff-Love plates. Eur. J. Mech. A/Solids. 23(4), 689–702 (2004)

    MATH  Google Scholar 

  10. Zhai, J., Cai, N., Shi, Z., Lin, Y., Nan, C.W.: Coupled magnetodielectric properties of laminated PbZr0.53Ti0\(\_\)47O3/NiFe2O4 ceramics. J. Appl. Phys. 95(10), 5685–5690 (2004)

    Google Scholar 

  11. Wu, C.P., Tsai, Y.H.: Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int. J. Eng. Sci. 45(9), 744–769 (2007)

    Google Scholar 

  12. Huang, D.J., Ding, H.J., Chen, W.Q.: Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading. Eur. J. Mech. A. Solids 29(3), 356–69 (2010)

    Google Scholar 

  13. Wang, Y., Xu, R., Ding, H.: Axisymmetric bending of functionally graded circular magneto-electro-elastic plates. Eur. J. Mech. A. Solids 30(6), 999–1011 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Lang, Z., Xuewu, L.: Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells. Appl. Math. Modell. 37(4), 2279–92 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Lao, C.S., Kuang, Q., Wang, Z.L., Park, M.C., Deng, Y.: Polymer functionalized piezoelectric-FET as humidity/chemical nano-sensors. Appl. Phys. Lett. 26(90), 1–3 (2007)

    Google Scholar 

  16. Tanner, S.M., Gray, J.M., Rogers, C.T., Bertness, K.A., Sanford, N.A.: High-Q GaN nanowire resonators and oscillators. Appl. Phys. Lett. 91(20), 203117 (2007)

    Google Scholar 

  17. Farajpour, A., Mohammadi, M., Shahidi, A.R., Mahzoon, M.: Axisymmetric buckling of the circular graphene plates with the nonlocal continuum plate model. Physica E 43(10), 1820–1825 (2011)

    Google Scholar 

  18. Shah-Mohammadi-Azar, A., Khanchehgardan, A., Rezazadeh, G., Shabani, R.: Mechanical response of a piezoelectrically sandwiched nano-beam based on the nonlocal theory. Int. J. Eng Trans. C Aspects. 26(12), 1515–1524 (2013)

    Google Scholar 

  19. Shabani, R., Sharafkhani, N., Gharebagh, V.M.: Static and dynamic response of carbon nanotube-based nano-tweezers. Int. J. Eng. Trans. A Basics. 24(4), 377–385 (2011)

    Google Scholar 

  20. Malekzadeh, P., Shojaee, M.: Free vibration of nano-plates based on a nonlocal two-variable refined plate theory. Compos. Struct. 95, 443–453 (2013)

    Google Scholar 

  21. Khanchehgardan, A., Shah-MohammadiAzar, A., Rezazadeh, G., Shabani, R.: Thermo-elastic damping in nano-beam resonators based on nonlocal theory. Int. J. Eng. Trans. C Aspects. 26(12), 1505–1514 (2013)

    Google Scholar 

  22. Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nano-structures. Science 303(5658), 661–663 (2004)

    Google Scholar 

  23. Martin, L.W., Crane, S.P., Chu, Y.H., Holcomb, M.B., Gajek, M., Huijben, M., Yang, C.H., Balke, N., Rames, R.: Multiferroics and magnetoelectrics: Thin films and nano-structures. J. Phys.: Condens. Matter 20(43), 434220 (2008)

    Google Scholar 

  24. Wang, Y., Hu, J.M., Lin, Y., Nan, C.W.: Multiferroic magnetoelectric composite nano-structures. NPG Asia Mater. 2(2), 61–68 (2019)

    Google Scholar 

  25. Prashanthi, K., Shaibani, P.M., Sohrabi, A.R., Natarajan, T.S., Thundat, T.: Nano-scale agnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Status Solidi R. 6(6), 244–246 (2012)

    Google Scholar 

  26. Milazzo, A.: Large deflection of magneto-electro-elastic laminated plates. Appl. Math. Modell. 38(5–6), 1737–1752 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Jiangyi, C., Hualing, C., Ernian, P.: Free vibration of functionally graded, magnetoelectro-elastic, and multilayered plates. Acta Mech. Solida Sin. 19(2), 160–166 (2006)

    Google Scholar 

  28. Kumaravel, A., Ganesan, N., Sethuraman, R.: Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment. Multidiscip. Model. Mater. Struct. 3(4), 461–76 (2007)

    Google Scholar 

  29. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nano-structures due to the flexoelectric effect. Phys. Rev. B. 77(12), 125424 (2008)

    Google Scholar 

  30. Kogan, S.M.: Piezoelectric effect during inhomogeneous Deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State. 5, 2069–2070 (1964)

    Google Scholar 

  31. Bunch, J.S., Van Ver Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007)

    Google Scholar 

  32. Kogan, S.M.: Piezoelectric effect under an inhomogeneous strain and acoustic scattering of carriers in crystals. Fiz. Tverd. Tela 1(a 5), 2829–2831 (1963)

    Google Scholar 

  33. Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in non-piezoelectric materials due to nano-scale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B. 74(1), 014110 (2006)

    Google Scholar 

  34. Shen, S.P., Hu, S.L.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Li, A., Zhou, S., Qi, L., Chen, X.: A reformulated flexoelectric theory for isotropic dielectrics. J. Phys. D Appl. Phys. 48(46), 465502 (2015)

    Google Scholar 

  36. Chen, Y., Lee, J.D., Eskandarian, A.: Atomistic viewpoint of the applicability of micro-continuum theories. Int. J. Solids Struct. 41(8), 2085–2097 (2004)

    MATH  Google Scholar 

  37. Wang, F.C., Zhao, Y.P.: Structural evolution of the silicon nanowire via molecular dynamics simulations: the double-strand atomic chain and the monatomic chain. Arch. Appl. Mech. 85(3), 323–329 (2015)

    Google Scholar 

  38. Janghorban, M.: Two different types of differential quadrature methods for static analysis of microbeams based on nonlocal thermal elasticity theory in thermal environment. Arch. Appl. Mech. 82(5), 669–675 (2012)

    MATH  Google Scholar 

  39. Akgöz, B., Civalek, O.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224(9), 2185–2201 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Akgöz, B., Civalek, O.: A new trigonometric beam model for buckling of strain gradient microbeams. Int. J. Mech. Sci. 81, 88–94 (2014)

    Google Scholar 

  41. Demir, C., Civalek, O.: On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Numanoğlu, H.M., Akgöz, B., Civalek, O.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018)

    Google Scholar 

  43. Akgöz, B., Civalek, O.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20(4), 606–616 (2014)

    MathSciNet  Google Scholar 

  44. Zhu, B.B., Wang, J.G., Li, G.Q.: A kind of selective algorithm for the calculation of the state vectors in the multi-layered magneto-electro-elastic media. J. Hefei Univ. Technol. 27(9), 1028–1032 (2004)

    Google Scholar 

  45. Guan, Q., He, S.R.: Two-dimensional analysis of piezoelectric/piezomagnetic and elastic media. Compos. Struct. 69(2), 229–237 (2005)

    MathSciNet  Google Scholar 

  46. Guan, Q., He, S.R.: Three-dimensional analysis of piezoelectric/piezomagnetic elastic media. Compos. Struct. 72(4), 419–428 (2006)

    Google Scholar 

  47. Wang, J.G., Chen, L.F., Fang, S.S.: State vector approach to analysis of multilayered magneto-electro-elastic plates. Int. J. Solids Struct. 40(7), 1669–1680 (2003)

    MATH  Google Scholar 

  48. Wang, J.G., Fang, S.S., Chen, L.F.: The state vector methods for space axisymmetric problems in multilayered piezoelectric media. Int. J. Solids Struct. 39(15), 3959–3970 (2002)

    MATH  Google Scholar 

  49. Chen, W.Q., Kang, Y.L., Ding, H.J.: On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. J. Sound Vib. 279(1–2), 237–251 (2005)

    Google Scholar 

  50. Yao, W.A.: Symplectic solution system and Saint-Venant principle on anti-plane problem of magneto-electro-elastic solids. J. Dalian Univ. Technol. 44(5), 630–633 (2004)

    Google Scholar 

  51. Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. 68(4), 608–618 (2001)

    MATH  Google Scholar 

  52. Pan, E., Han, F.: Exact solution for functionally graded and layered magneto-electro-elastic plates. Int. J. Eng. Sci. 43(3–4), 321–339 (2005)

    Google Scholar 

  53. Ramirez, F., Heyliger, P.R., Pan, E.: Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mech. Adv. Mater. Struct. 13(3), 249–266 (2006)

    Google Scholar 

  54. Annigeri, A.R., Ganesan, N., Swarnamani, S.: Free vibration behavior of multiphase and layered magneto-electro-elastic beam. J. Sound Vib. 299(1–2), 44–63 (2007)

    Google Scholar 

  55. Wu, C.P., Lu, Y.C.: A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos. Struct. 90(3), 363–372 (2009)

    Google Scholar 

  56. Wu, C.P., Tsai, Y.H.: Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci. 46(9), 843–857 (2008)

    MATH  Google Scholar 

  57. Li, Y.S.: Buckling analysis of magneto-electro-elastic plate resting on Pasternak elastic foundation. Mech. Res. Commun. 56, 104–114 (2014)

    Google Scholar 

  58. Liu, C., Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Thermo-electromechanical vibration of piezoelectric nano-plates based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013)

    Google Scholar 

  59. Hadjesfandiari, A.R.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50(18), 2781–2791 (2013)

    Google Scholar 

  60. Li, A.Q., Zhou, S.J., Zhou, S.S., Wang, B.L.: Size dependent analysis of a three-layer microbeam including electromechanical coupling. Compos. Struct. 116(1), 120–7 (2014)

    Google Scholar 

  61. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Free vibration of size-dependent magneto-electro-elastic nano-plates based on the nonlocal theory. Acta. Mech. Sin. 30(4), 516–525 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Liang, X., Shen, S.P.: Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int. J. Appl. Mech. 05(02), 1350015-1350015-16 (2013)

    Google Scholar 

  63. Hu, S.L., Shen, S.P.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Contin. 13(1), 63–87 (2009)

    Google Scholar 

  64. Li, Y.S., Cai, Z.Y., Shi, S.Y.: Buckling and free vibration of magnetoelectroelastic nano-plate based on nonlocal theory. Compos. Struct. 111(1), 522–529 (2014)

    Google Scholar 

  65. Liu, M.F., Chang, T.P.: Closed form expression for the vibration problem of a transversely isotropic magneto-electro-elastic plate. J. Appl. Mech. 77(2), 024502 (2010)

    Google Scholar 

  66. Farajpour, A., Hairi Yazdi, M.R., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nano-plates. Compos. Struct. 140, 323–336 (2016)

    Google Scholar 

  67. Razavi, S., Shooshtari, A.R.: Nonlinear free vibration of magneto-electro-elastic rectangular plates. Compos. Struct. 119, 377–384 (2015)

    Google Scholar 

  68. Wang, C.M., Ke, L.L., Roy Chowdhury, A.N., Yang, J., Kitipornchai, S., Fernando, D.: Critical examination of midplane and neutral plane formulations for vibration analysis of FGM beams. Eng. Struct. 130, 275–281 (2017)

    Google Scholar 

  69. Barati, M.R.: Investigating nonlinear vibration of closed circuit flexoelectric nano-beams with surface effects via Hamiltonian method. Microsyst. Technol. 24(4), 1841–1851 (2017)

    Google Scholar 

  70. Liang, X., Yang, W., Hu, S., Shen, S.: Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. J. Phys. D Appl. Phys. 49(11), 115307 (2016)

    Google Scholar 

  71. Zhang, C., Zhang, L., Shen, X., Chen, W.: Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity. J. Appl. Phys. 119(13), 134102 (2016)

    Google Scholar 

  72. Tadi Beni, Y.: Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mater. Syst. Struct. 27(16), 2199–2215 (2016)

    Google Scholar 

  73. Alibeigi, B., Tadi Beni, Y., Mehralian, F.: On the thermal buckling of magneto-electro- elastic piezoelectric nanobeams. Eur. Phys. J. Plus. 133(3), 1–18 (2018)

    Google Scholar 

  74. Omidian, R., Tadi Beni, Y., Mehralian, F.: Analysis of size-dependent smart flexoelectric nanobeams. Eur. Phys. J. Plus. 132(481), 1–19 (2017)

    Google Scholar 

  75. Habibi, B., Tadi Beni, Y., Mehralian, F.: Free vibration of magneto-electro-elastic nanobeams based on modified couple stress theory in thermal environment. Mech. Adv. Mater. Struct. 267, 601–613 (2019)

    Google Scholar 

  76. Ebnali samani, M., Tadi Beni, Y.: Size dependent thermo-mechanical buckling of the flexoelectric nanobeam. Mater. Res. Exp. 5(8), 085018 (2018)

    Google Scholar 

  77. Mehralian, F., Tadi Beni, Y., Ansari, R.: On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure. Int. J. Mech. Sci. 119, 155–169 (2016)

    Google Scholar 

  78. Ebrahimi, N., Tadi Beni, Y.: Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel. Compos. Struct. 22(6), 1301–1336 (2016)

    Google Scholar 

  79. Mehralian, F., Tadi Beni, Y., Ansari, R.: Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell. Compos. Struct. 152, 45–61 (2016)

    Google Scholar 

  80. Mehralian, F., Tadi Beni, Y.: Buckling of bimorph functionally graded piezoelectric cylindrical nanoshell. Proc. Inst. Mech. Eng. Part C. 232(19), 3538–3550 (2018)

    Google Scholar 

  81. Fattahian Dehkordi, S., Tadi Beni, Y.: Electro-mechanical free vibration of single- walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. Int. J. Mech. Sci. 128, 125–139 (2017)

    Google Scholar 

  82. Mehralian, F., Tadi Beni, Y.: Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory. J. Braz. Soc. Mech. Sci. Eng. 40(1), 1–27 (2018)

    Google Scholar 

  83. Zeighampour, H., Tadi Beni, Y.: Cylindrical thin-shell model based on modified strain gradient theory. Int. J. Eng. Sci. 78, 27–47 (2014)

    MathSciNet  MATH  Google Scholar 

  84. Kheibari, F., Tadi Beni, Y.: Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Mater. Des. 114, 572–583 (2017)

    Google Scholar 

  85. Ebrahimi, F., Barati, M.R.: Vibration analysis of size-dependent flexoelectric nano-plates incorporating surface and thermal effects. J. Mech. Adv. Mater. Struct. 25(7), 611–621 (2017)

    Google Scholar 

  86. Shojaeian, M., Tadi Beni, Y.: Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens. Actuators A 232, 49–62 (2015)

    Google Scholar 

  87. Shojaeian, M., Tadi Beni, Y., Ataei, H.: Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory. Acta Astronaut. 118, 62–71 (2016)

    Google Scholar 

  88. Ghobadi, A., Tadi Beni, Y., Golestanian, H.: Size dependent nonlinear bending analysis of a flexoelectric functionally graded nano-plate under thermo-electro-mechanical loads. J. Solid Mech. 12(1), 33–56 (2020)

    Google Scholar 

  89. Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Spontaneous flexoelectric/ flexomagnetic effect in nanoferroics. Phys. Rev. B. 79(16), 165433 (2009)

    Google Scholar 

  90. Li, J.U.: The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics. Mech. Mater. 36(10), 949–958 (2004)

    Google Scholar 

  91. Toupin, R.A.: The elastic dielectric. J. Ration. Mech. Anal. 5(6), 849–915 (1956)

    MathSciNet  MATH  Google Scholar 

  92. Coey, J.M.D.: Magnetism and magnetic materials. Published in the United States of America by Cambridge University Press, New York (2010)

  93. Hadjiloizi, D.A., Kalamkarov, A.L., Metti, C., Georgiades, A.V.: Analysis of smart piezo-magneto-thermo-elastic composite and reinforced plates: Part II-Applications. Curved Layer. Struct. 1(1), 32–58 (2014)

    Google Scholar 

  94. Ebrahimi, F., Barati, M.R.: An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nano-scale beams. Adv. Nano Res. 4(2), 65–84 (2016)

    Google Scholar 

  95. Zhang, Z., Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nano-plate. J. Appl. Phys. 116(1), 014307 (2014)

    Google Scholar 

  96. Ghobadi, A., Tadi Beni, Y., Golestanian, H.: Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field. Int. J. Mech. Sci. 152, 118–137 (2018)

    Google Scholar 

  97. Tadi Beni, Y., Mehralian, F., Razavi, H.: Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)

    Google Scholar 

  98. Ebrahimi, F., Salari, E.: Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nano-beams. Smart Mater. Struct. 24(12), 125007 (2015)

    Google Scholar 

  99. Bakhsheshy, A., Khorshidi, K.: Free vibration analysis of functionally graded rectangular plates in contact with bounded fluid. Modares Mech. Eng. 14(8), 165–173 (2014)

    MATH  Google Scholar 

  100. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillation. Wiley, New York (1995)

    MATH  Google Scholar 

  101. Shooshtari, A., Razavi, S.: Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation. Compos. B 78, 95–108 (2015)

    Google Scholar 

  102. Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nano-plates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} g_{1} ({{\hat{n}}})= & {} \rho _{2} \left( {h-2{\bar{z}}_{c} } \right) +h\left( {\rho _{2} -\rho _{1} } \right) f_{1} ({{\hat{n}}}), \nonumber \\ g_{2} ({{\hat{n}}})= & {} -2\left( {\frac{\rho _{2} h}{2}\left( {h-2{\bar{z}}_{c} } \right) +h^{2}\left( {\rho _{2} -\rho _{1} } \right) f_{2} ({{\hat{n}}})} \right) , \nonumber \\ g_{3} ({{\hat{n}}})= & {} \frac{\rho _{2} h}{3}\left( {h^{2}-3h{\bar{z}}_{c} +3{\bar{z}}_{c}^{2} } \right) +h^{3}\left( {\rho _{2} -\rho _{1} } \right) f_{3} ({{\hat{n}}}), \end{aligned}$$
(A.1)
$$\begin{aligned} f_{1} ({{\hat{n}}})= & {} \frac{({1+{\bar{h}}})^{{\hat{n}}+1} -({{\bar{h}}})^{{\hat{n}}+1}}{n+1}, \nonumber \\ f_{2} ({{\hat{n}}})= & {} \frac{({1+{\bar{h}}})^{{\hat{n}}+2}- ({{\bar{h}}})^{{\hat{n}}+2}}{n+2}-\frac{({1+{\bar{h}}})^{{\hat{n}}+1}- ({{\bar{h}}})^{{\hat{n}}+1}}{2({n+1})},\nonumber \\ f_{3} ({{\hat{n}}})= & {} \frac{({1+{\bar{h}}})^{{\hat{n}}+3}- ({{\bar{h}}})^{{\hat{n}}+3}}{n+3}-\frac{({1+{\bar{h}}})^{{\hat{n}}+2} -({{\bar{h}}})^{{\hat{n}}+2}}{n+2}-\frac{({1+{\bar{h}}})^{{\hat{n}}+1} -({{\bar{h}}})^{{\hat{n}}+1}}{4({n+1})}, \end{aligned}$$
(A.2)

where:

$$\begin{aligned} {\bar{h}}=\frac{1}{2}-\frac{{\bar{z}}_{c} }{h}. \end{aligned}$$

Appendix B

$$\begin{aligned} N_{xx}= & {} {\hat{a}}_{1} \left( {\frac{\partial ^{2}w}{\partial x^{2}}} \right) ^{2}+{\hat{a}}_{2} \left( {\frac{\partial ^{2}w}{\partial y^{2}}} \right) ^{2}+{\hat{a}}_{3} \left( {\frac{\partial u_{\circ } }{\partial x}} \right) ^{2}+{\hat{a}}_{4} \left( {\frac{\partial v_{\circ } }{\partial y}} \right) ^{2}+{\hat{a}}_{5} +\,{\hat{a}}_{6} \left( {\frac{\partial ^{2}w}{\partial x^{2}}} \right) \nonumber \\&+{\hat{a}}_{7} \left( {\frac{\partial u_{\circ } }{\partial x}\frac{\partial ^{2}w}{\partial x^{2}}} \right) +{\hat{a}}_{8} \left( {\frac{\partial v_{\circ } }{\partial y}\frac{\partial ^{2}w}{\partial x^{2}}} \right) +{\hat{a}}_{9} \left( {\frac{\partial ^{2}w}{\partial y^{2}}\frac{\partial ^{2}w}{\partial x^{2}}} \right) \,+\,{\hat{a}}_{10} \left( {\frac{\partial ^{2}w}{\partial y^{2}}} \right) \nonumber \\&+{\hat{a}}_{11} \left( {\frac{\partial u_{\circ } }{\partial x}\frac{\partial ^{2}w}{\partial y^{2}}} \right) +{\hat{a}}_{12} \left( {\frac{\partial v_{\circ } }{\partial y}\frac{\partial ^{2}w}{\partial y^{2}}} \right) \,+\,{\hat{a}}_{13} \left( {\frac{\partial u_{\circ } }{\partial x}} \right) +{\hat{a}}_{14} \left( {\frac{\partial v_{\circ } }{\partial y}\frac{\partial u_{\circ } }{\partial x}} \right) \,\,+\,{\hat{a}}_{15} \left( {\frac{\partial v_{\circ } }{\partial y}} \right) , \nonumber \\ N_{xx}^{hx}= & {} {\hat{b}}_{1} \left( {\frac{\partial ^{3}w}{\partial x^{3}}} \right) +{\hat{b}}_{2} \left( {\frac{\partial ^{3}w}{\partial x\partial y^{2}}} \right) +{\hat{b}}_{3} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x^{2}}} \right) +{\hat{b}}_{4} \left( {\frac{\partial ^{2}u_{\circ } }{\partial y^{2}}} \right) +{\hat{b}}_{5} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x\partial y}} \right) , \nonumber \\ N_{yy}^{hx}= & {} {\hat{c}}_{1} \left( {\frac{\partial ^{3}w}{\partial x^{3}}} \right) +{\hat{c}}_{2} \left( {\frac{\partial ^{3}w}{\partial x\partial y^{2}}} \right) +{\hat{c}}_{3} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x^{2}}} \right) +{\hat{c}}_{4} \left( {\frac{\partial ^{2}u_{\circ } }{\partial y^{2}}} \right) +{\hat{c}}_{5} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x\partial y}} \right) , \nonumber \\ N_{xy}^{hx}= & {} {\hat{d}}_{1} \left( {\frac{\partial ^{3}w}{\partial x^{2}\partial y}} \right) +{\hat{d}}_{2} \left( {\frac{\partial ^{3}w}{\partial y^{3}}} \right) +{\hat{d}}_{3} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x\partial y}} \right) +{\hat{d}}_{4} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x^{2}}} \right) +{\hat{d}}_{5} \left( {\frac{\partial ^{2}v_{\circ } }{\partial y^{2}}} \right) , \nonumber \\ Q= & {} {\hat{e}}_{1} \left( {\frac{\partial ^{2}w}{\partial x\partial y}} \right) +{\hat{e}}_{2} \left( {\frac{\partial u_{\circ } }{\partial y}} \right) +{\hat{e}}_{3} \left( {\frac{\partial v_{\circ } }{\partial x}} \right) , \end{aligned}$$
(B.1)
$$\begin{aligned} N_{yy}= & {} {\hat{f}}_{1} \left( {\frac{\partial ^{2}w}{\partial x^{2}}} \right) +{\hat{f}}_{2} \left( {\frac{\partial ^{2}w}{\partial y^{2}}} \right) +{\hat{f}}_{3} \left( {\frac{\partial u_{\circ } }{\partial x}} \right) +{\hat{f}}_{4} \left( {\frac{\partial v_{\circ } }{\partial y}} \right) +{\hat{f}}_{5}, \nonumber \\ N_{xx}^{hy}= & {} {\hat{g}}_{1} \left( {\frac{\partial ^{3}w}{\partial x^{3}}} \right) +{\hat{g}}_{2} \left( {\frac{\partial ^{3}w}{\partial y^{3}}} \right) +{\hat{g}}_{3} \left( {\frac{\partial ^{3}w}{\partial x\partial y^{2}}} \right) +{\hat{g}}_{4} \left( {\frac{\partial ^{3}w_{\circ } }{\partial y\partial x^{2}}} \right) +{\hat{g}}_{5} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x^{2}}} \right) \nonumber \\&+{\hat{g}}_{6} \left( {\frac{\partial ^{2}u_{\circ } }{\partial y^{2}}} \right) +{\hat{g}}_{7} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x\partial y}} \right) +{\hat{g}}_{8} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x^{2}}} \right) +{\hat{g}}_{9} \left( {\frac{\partial ^{2}v_{\circ } }{\partial y^{2}}} \right) +{\hat{g}}_{10} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x\partial y}} \right) , \nonumber \\ N_{yy}^{hy}= & {} {\hat{h}}_{1} \left( {\frac{\partial ^{3}w}{\partial y^{3}}} \right) +{\hat{h}}_{2} \left( {\frac{\partial ^{3}w}{\partial y\partial x^{2}}} \right) +{\hat{h}}_{3} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x\partial y}} \right) +{\hat{h}}_{4} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x^{2}}} \right) +{\hat{h}}_{5} \left( {\frac{\partial ^{2}v_{\circ } }{\partial y^{2}}} \right) , \nonumber \\ N_{xy}^{hy}= & {} {\hat{i}}_{1} \left( {\frac{\partial ^{3}w}{\partial x^{3}}} \right) +{\hat{i}}_{2} \left( {\frac{\partial ^{3}w}{\partial x\partial y^{2}}} \right) +{\hat{i}}_{3} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x^{2}}} \right) +{\hat{i}}_{4} \left( {\frac{\partial ^{2}u_{\circ } }{\partial y^{2}}} \right) +{\hat{i}}_{5} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x\partial y}} \right) , \, \hbox {uik} \end{aligned}$$
(B.2)
$$\begin{aligned} M_{xx}= & {} {\hat{j}}_{1} \left( {\frac{\partial ^{2}w}{\partial x^{2}}} \right) ^{2}+{\hat{j}}_{2} \left( {\frac{\partial ^{2}w}{\partial y^{2}}} \right) ^{2}+{\hat{j}}_{3} \left( {\frac{\partial u_{\circ } }{\partial x}} \right) ^{2}+{\hat{j}}_{4} \left( {\frac{\partial v_{\circ } }{\partial y}} \right) ^{2}+{\hat{j}}_{5} +{\hat{j}}_{6} \left( {\frac{\partial ^{2}w}{\partial x^{2}}} \right) \nonumber \\&+{\hat{j}}_{7} \left( {\frac{\partial ^{2}w}{\partial x^{2}}\frac{\partial ^{2}w}{\partial y^{2}}} \right) +{\hat{j}}_{8} \left( {\frac{\partial ^{2}w}{\partial x^{2}}\frac{\partial u_{\circ } }{\partial x}} \right) +{\hat{j}}_{9} \left( {\frac{\partial ^{2}w}{\partial x^{2}}\frac{\partial v_{\circ } }{\partial y}} \right) +{\hat{j}}_{10} \left( {\frac{\partial ^{2}w}{\partial y^{2}}} \right) +{\hat{j}}_{11} \left( {\frac{\partial ^{2}w}{\partial y^{2}}\frac{\partial u_{\circ } }{\partial x}} \right) \nonumber \\&+{\hat{j}}_{12} \left( {\frac{\partial ^{2}w}{\partial y^{2}}\frac{\partial v_{\circ } }{\partial y}} \right) +{\hat{j}}_{13} \left( {\frac{\partial u_{\circ } }{\partial x}} \right) +{\hat{j}}_{14} \left( {\frac{\partial v_{\circ } }{\partial y}\frac{\partial u_{\circ } }{\partial x}} \right) +{\hat{j}}_{15} \left( {\frac{\partial v_{\circ } }{\partial y}} \right) +{\hat{j}}_{16} \left( {\frac{\partial ^{3}w}{\partial x\partial y^{2}}} \right) , \nonumber \\ M_{yy}= & {} {\hat{k}}_{1} \left( {\frac{\partial ^{2}w}{\partial x^{2}}} \right) +{\hat{k}}_{2} \left( {\frac{\partial ^{2}w}{\partial y^{2}}} \right) +{\hat{k}}_{3} \left( {\frac{\partial ^{3}u_{\circ } }{\partial x\partial y^{2}}} \right) +{\hat{k}}_{4} \left( {\frac{\partial u_{\circ } }{\partial x}} \right) +{\hat{k}}_{5} \left( {\frac{\partial v_{\circ } }{\partial y}} \right) +{\hat{k}}_{6}, \nonumber \\ M_{xy}= & {} {\hat{l}}_{1} \left( {\frac{\partial ^{2}w}{\partial x\partial y}} \right) +{\hat{l}}_{2} \left( {\frac{\partial u_{\circ } }{\partial y}} \right) +{\hat{l}}_{3} \left( {\frac{\partial v_{\circ } }{\partial x}} \right) , \nonumber \\ M_{xx}^{h}= & {} {\hat{m}}_{1} \left( {\frac{\partial ^{3}w}{\partial x^{3}}} \right) +{\hat{m}}_{2} \left( {\frac{\partial ^{3}w}{\partial x\partial y^{2}}} \right) +{\hat{m}}_{3} \left( {\frac{\partial ^{3}w}{\partial y\partial x^{2}}} \right) +{\hat{m}}_{4} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x^{2}}} \right) +{\hat{m}}_{5} \left( {\frac{\partial ^{2}u_{\circ } }{\partial y^{2}}} \right) \nonumber \\&+{\hat{m}}_{6} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x\partial y}} \right) +{\hat{m}}_{7} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x^{2}}} \right) +{\hat{m}}_{8} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x\partial y}} \right) , \nonumber \\ M_{yy}^{h}= & {} {\hat{n}}_{1} \left( {\frac{\partial ^{3}w}{\partial y^{3}}} \right) +{\hat{n}}_{2} \left( {\frac{\partial ^{3}w}{\partial y\partial x^{2}}} \right) +{\hat{n}}_{3} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x\partial y}} \right) +{\hat{n}}_{4} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x^{2}}} \right) +{\hat{n}}_{5} \left( {\frac{\partial ^{2}v_{\circ } }{\partial y^{2}}} \right) , \nonumber \\ M_{xxy}^{h}= & {} {\hat{o}}_{1} \left( {\frac{\partial ^{3}w}{\partial x^{3}}} \right) +{\hat{o}}_{2} \left( {\frac{\partial ^{3}w}{\partial y^{3}}} \right) +{\hat{o}}_{3} \left( {\frac{\partial ^{3}w}{\partial x\partial y^{2}}} \right) +{\hat{o}}_{4} \left( {\frac{\partial ^{3}w}{\partial y\partial x^{2}}} \right) +{\hat{o}}_{5} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x^{2}}} \right) \nonumber \\&+{\hat{o}}_{6} \left( {\frac{\partial ^{2}u_{\circ } }{\partial y^{2}}} \right) +{\hat{o}}_{7} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x\partial y}} \right) +{\hat{o}}_{8} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x^{2}}} \right) +{\hat{o}}_{9} \left( {\frac{\partial ^{2}v_{\circ } }{\partial y^{2}}} \right) +{\hat{o}}_{10} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x\partial y}} \right) , \nonumber \\ M_{xyy}^{h}= & {} {\hat{p}}_{1} \left( {\frac{\partial ^{3}w}{\partial x^{3}}} \right) +{\hat{p}}_{2} \left( {\frac{\partial ^{3}w}{\partial x\partial y^{2}}} \right) +{\hat{p}}_{3} \left( {\frac{\partial ^{2}u_{\circ } }{\partial x^{2}}} \right) +{\hat{p}}_{4} \left( {\frac{\partial ^{2}u_{\circ } }{\partial y^{2}}} \right) +{\hat{p}}_{5} \left( {\frac{\partial ^{2}v_{\circ } }{\partial x\partial y}} \right) . \end{aligned}$$
(B.3)

The coefficients \({\hat{a}}_{i}\), \({\hat{b}}_{i}\), \({\hat{c}}_{i}\), \({\hat{d}}_{i}\), \({\hat{e}}_{i}\), \({\hat{f}}_{i}\), \({\hat{g}}_{i}\), \({\hat{h}}_{i}\), \({\hat{i}}_{i}\), \({\hat{j}}_{i}\), \({\hat{k}}_{i}\), \({\hat{l}}_{i}\), \({\hat{m}}_{i}\), \({\hat{n}}_{i} ,{\hat{o}}_{i}\), \({\hat{p}}_{i}\) are the material derivatives determined by integrating along the z-axis. In this section, the process of determining one of these coefficients such as \({\hbox {a}}_{\mathrm {i}}\) is described. For example, \({\hbox {N}}_{\mathrm {xx}}\) is obtained using equation (33) as follows:

$$\begin{aligned} N_{xx} =N_{\sigma _{11} } +N_{\sigma _{11}^{ES} } +N_{\sigma _{11}^{MS} } =\int \limits _{-{\bar{z}}_{c} }^{h-{\bar{z}}_{c} } {\left( {\sigma _{11} +\sigma _{11}^{ES} +\sigma _{11}^{MS} } \right) } \mathrm{d}z. \end{aligned}$$
(B.4)

Using relations (2), (12) and (13), the parameters \(\sigma _{11}\), \(\sigma _{11}^{ES}\), \(\sigma _{11}^{MS}\) are simplified as follows:

$$\begin{aligned} \sigma _{11}= & {} \frac{\partial U}{\partial \varepsilon _{11} }=k\varepsilon _{nn} +2\mu {\varepsilon }'_{11} -f_{1}^{E} Q_{kk} -f_{1}^{M} S_{kk} -\beta _{11} \Delta T, \nonumber \\ \sigma _{11}^{ES}= & {} \frac{1}{2}E_{3} P_{3} +\frac{1}{2}V_{33} Q_{33} -\frac{1}{2}\varepsilon _{0} \varphi _{,3} \varphi _{,3} +\varphi _{,3} P_{3} \nonumber \\ \sigma _{11}^{MS}= & {} \frac{1}{2}H_{3} B_{3} +\frac{1}{2}Z_{33} S_{33} -\frac{1}{2}\mu \psi _{,3} \psi _{,3}. \end{aligned}$$
(B.5)

Using strain–displacement relations (Eq. 9), the above quantities are obtained in terms of displacement components. Therefore, substituting the obtained parameters in Appendix (B.4) and integrating along the z-axis, the constants \({\hat{a}}_{i}\) are determined. A similar process will be used to determine the other coefficients.

Appendix C

$$\begin{aligned} F_{1}= & {} \frac{A_{11} B_{12}^{2} -A_{12} B_{11} B_{12} +A_{15} B_{11}^{2} }{B_{11}^{2}}, \quad F_{2} =\frac{A_{16} B_{11}^{2} -\left( {A_{12} B_{13} -A_{13} B_{12} } \right) B_{11} +2B_{12} B_{13} A_{11} }{B_{11}^{2}}, \nonumber \\ F_{3}= & {} \frac{({-2A_{11} B_{12} +A_{12} B_{11}}) B_{14}}{B_{11}^{2}}, \quad F_{4} =\frac{-A_{14} B_{12} +A_{17} B_{11} }{B_{11}}, \nonumber \\ F_{5}= & {} \frac{A_{11} B_{13}^{2} -A_{13} B_{11} B_{13} +A_{18} B_{11}^{2} }{B_{11}^{2}}, \quad F_{6} =\frac{({2A_{11} B_{13} -A_{13} B_{11}}) B_{14}}{B_{11}^{2}}, \nonumber \\ F_{7}= & {} \frac{-A_{14} B_{13} +A_{19} B_{11} }{B_{11}}, F_{8} =\frac{-A_{11} B_{14}^{2} }{B_{11}^{2}}, \nonumber \\ F_{9}= & {} \frac{({-A_{20} B_{11} +A_{14} B_{14}})}{B_{11}}, \end{aligned}$$
(C.1)
$$\begin{aligned} G_{1}= & {} -4F_{1} F_{8} +F_{3}^{2},\quad G_{2} =-4F_{1} F_{6} +2F_{2} F_{3},\quad G_{3} =-4F_{9} F_{1} +2F_{3} F_{4}, \nonumber \\ G_{4}= & {} -4F_{1} F_{5} +F_{2}^{2}, \quad G_{5} =-4F_{1} F_{7} +2F_{2} F_{4} ,\quad G_{6} =F_{4}^{2}. \end{aligned}$$
(C.2)

Appendix D

$$\begin{aligned} \zeta _{1}= & {} \frac{1}{2F_{1}^{2} B_{11}^{2} }\left[ {2\zeta _{11} F_{1}^{2} +\zeta _{12} F_{1} +\zeta _{13} F_{2}^{2} } \right] ,\quad \zeta _{2} =\frac{1}{2F_{1}^{2} B_{11}^{2} }\left[ {\zeta _{21} F_{1}^{2} +\zeta _{22} F_{1} +2\zeta _{23} F_{2} F_{3} } \right] , \nonumber \\ \zeta _{3}= & {} \frac{{\tilde{g}}}{2F_{1}^{2} B_{11}^{2} }\left[ {\zeta _{31} F_{1} +\zeta _{32} F_{2} } \right] , \quad \zeta _{4} =\frac{1}{2F_{1}^{2} B_{11} }\left[ {\zeta _{41} F_{1}^{2} +\zeta _{42} F_{1} +2\zeta _{43} F_{2} F_{4} } \right] , \nonumber \\ \zeta _{5}= & {} \frac{1}{2F_{1}^{2} B_{11}^{2} }\left[ {\zeta _{51} F_{1}^{2} +\zeta _{52} F_{1} +\zeta _{53} F_{3}^{2} } \right] , \quad \zeta _{6} =\frac{{\tilde{g}}}{2F_{1}^{2} B_{11}^{2} }\left[ {\zeta _{61} F_{1} +\zeta _{62} F_{3} } \right] , \nonumber \\ \zeta _{7}= & {} \frac{1}{2F_{1}^{2} B_{11}^{2} }\left[ {\zeta _{71} F_{1}^{2} +\zeta _{72} F_{1} +2\zeta _{73} F_{3} F_{4} } \right] ,\quad \zeta _{8} =\frac{{\tilde{g}}}{2F_{1}^{2} B_{11}^{2} }\left[ {\zeta _{81} F_{1} +\zeta _{82} F_{4} } \right] , \nonumber \\ \zeta _{9}= & {} \frac{1}{2F_{1}^{2} B_{11}^{2} }\left[ {\zeta _{91} F_{1}^{2} +\zeta _{92} F_{1} F_{4} +\zeta _{93} F_{4}^{2} } \right] , \end{aligned}$$
(D.1)

where:

$$\begin{aligned} \zeta _{11}= & {} B_{11}^{2} C_{8} -B_{11} B_{13} C_{13} +B_{13}^{2} C_{11}, \nonumber \\ \zeta _{12}= & {} \left( {F_{2} C_{16} -2F_{5} C_{15} } \right) B_{11}^{2} +\left( {\left( {F_{2} C_{13} +2F_{5} C_{12} } \right) B_{12} +B_{13} F_{2} C_{12} } \right) B_{11} \nonumber \\&-2B_{12} C_{11} \left( {F_{2} B_{13} +F_{5} B_{12} } \right) , \nonumber \\ \zeta _{13}= & {} B_{11}^{2} C_{5} -B_{11} B_{12} C_{12} +B_{12}^{2} C_{11},\nonumber \\ \zeta _{21}= & {} -2B_{14} \left( {B_{11} C_{13} -2B_{13} C_{11} } \right) , \nonumber \\ \zeta _{22}= & {} \left( {F_{3} C_{16} -2F_{6} C_{15} } \right) B_{11}^{2} +\left( {\left( {F_{3} C_{13} +2F_{6} C_{12} } \right) B_{12} +C_{12} \left( {F_{2} B_{14} +F_{3} B_{13} } \right) } \right) B_{11} \nonumber \\&-2B_{12} C_{11} \left( {F_{2} B_{14} +F_{3} B_{13} +F_{6} B_{12} } \right) , \nonumber \\ \zeta _{23}= & {} B_{11}^{2} C_{15} -B_{11} B_{12} C_{12} +B_{12}^{2} C_{11}, \nonumber \\ \zeta _{31}= & {} B_{11}^{2} C_{16} -\left( {B_{12} C_{13} +B_{13} C_{12} } \right) B_{11} +2B_{12} B_{23} C_{11}, \nonumber \\ \zeta _{32}= & {} -\left( {B_{11}^{2} C_{15} -B_{11} B_{12} C_{12} +B_{12}^{2} C_{11} } \right) , \nonumber \\ \zeta _{41}= & {} \left( {2B_{11}^{2} C_{19} -2B_{11} B_{13} C_{14} } \right) , \nonumber \\ \zeta _{42}= & {} -\left( {F_{2} C_{17} +2F_{4} C_{16} +2F_{7} C_{15} } \right) B_{11}^{2} +\left[ {\left( {F_{2} C_{14} +F_{4} C_{13} +2F_{7} C_{12} } \right) B_{12} +B_{13} F_{4} C_{12} } \right] B_{11} \nonumber \\&-2B_{12} C_{11} \left( {F_{4} B_{13} +F_{7} B_{12} } \right) , \nonumber \\ \zeta _{43}= & {} 2\left( {B_{11}^{2} C_{15} -B_{11} B_{12} C_{12} +B_{12}^{2} C_{11} } \right) ,\nonumber \\ \zeta _{51}= & {} 2\left( {B_{14}^{2} C_{11} } \right) ,\nonumber \\ \zeta _{52}= & {} \left( {-2F_{8} C_{15} } \right) B_{11}^{2} +\left( {B_{14} F_{3} +2B_{12} F_{8} } \right) C_{12} B_{11} -2\left( {B_{14} F_{3} +B_{12} F_{8} } \right) C_{11} B_{12}, \nonumber \\ \zeta _{53}= & {} B_{11}^{2} C_{15} -B_{11} B_{12} C_{12} +C_{11} B_{12}^{2}, \nonumber \\ \zeta _{61}= & {} -\left( {B_{11} C_{12} -2B_{12} C_{11} } \right) B_{14}, \nonumber \\ \zeta _{62}= & {} -\left( {C_{15} B_{11}^{2} -B_{11} B_{12} C_{12} +C_{11} B_{12}^{2} } \right) , \nonumber \\ \zeta _{71}= & {} 2\left( {C_{20} B_{11}^{2} -B_{11} B_{14} C_{14} } \right) , \nonumber \\ \zeta _{72}= & {} -\left( {F_{3} C_{17} +F_{9} C_{15} +2F_{7} C_{15} } \right) B_{11}^{2} +\left[ {\left( {F_{3} C_{14} +2F_{9} C_{12} } \right) B_{12} +B_{14} F_{4} C_{12} } \right] B_{11} \nonumber \\&-2B_{12} C_{11} \left( {F_{4} B_{14} +F_{9} B_{12} } \right) , \nonumber \\ \zeta _{73}= & {} \left( {C_{15} B_{11}^{2} -B_{11} B_{12} C_{12} +C_{11} B_{12}^{2} } \right) ,\nonumber \\ \zeta _{81}= & {} \left( {B_{11} C_{17} -B_{12} C_{14} } \right) B_{11}, \nonumber \\ \zeta _{82}= & {} -\left( {C_{15} B_{11}^{2} -B_{11} B_{12} C_{12} +C_{11} B_{12}^{2} } \right) , \nonumber \\ \zeta _{91}= & {} 2\left( {B_{11}^{2} C_{11} } \right) , \nonumber \\ \zeta _{92}= & {} -\left( {B_{11} C_{17} -B_{12} C_{14} } \right) B_{11}, \nonumber \\ \zeta _{93}= & {} \left( {C_{15} B_{11}^{2} -B_{11} B_{12} C_{12} +C_{11} B_{12}^{2} } \right) . \end{aligned}$$
(D.2)

Appendix E

$$\begin{aligned} \lambda _{1}= & {} \frac{G_{5} }{2G_{6}},\quad \lambda _{2} =\frac{G_{3} }{2G_{6}},\quad \lambda _{3} =\frac{G_{2} }{2G_{6}}-\frac{G_{3} G_{5} }{4G_{6}^{2}}, \nonumber \\ \lambda _{4}= & {} \frac{G_{4} }{2G_{6} }-\frac{1}{8}\left( {\frac{G_{5} }{G_{6} }} \right) ^{2}, \quad \lambda _{5} =\frac{G_{1} }{2G_{6} }-\frac{1}{8}\left( {\frac{G_{3} }{G_{6} }} \right) ^{2}, \quad \lambda _{6} =-\frac{G_{2} G_{5} +G_{3} G_{4} }{4G_{6}^{2} }+\frac{3G_{5}^{2} G_{3} }{16G_{6}^{3}}, \nonumber \\ \lambda _{7}= & {} -\frac{G_{1} G_{5} +G_{2} G_{3} }{4G_{6}^{2} }+\frac{3G_{5} G_{3}^{2} }{16G_{6}^{3} },\quad \lambda _{8} =\frac{G_{4} G_{5} }{4G_{6}^{2} }+\frac{1}{16}\left( {\frac{G_{5} }{G_{6} }} \right) ^{3}, \nonumber \\ \lambda _{9}= & {} -\frac{G_{1} G_{3} }{4G_{6}^{2} }+\frac{1}{16}\left( {\frac{G_{3} }{G_{6} }} \right) ^{3}. \end{aligned}$$
(E.1)

Appendix F

$$\begin{aligned} \eta _{1}= & {} \zeta _{9} +\zeta _{8} G_{6}^{1/2} ,\quad \eta _{2} =\zeta _{3} G_{6}^{1/2} +\zeta _{4} +\zeta _{8} G_{6}^{1/2} \lambda _{1}, \nonumber \\ \eta _{3}= & {} \zeta _{6} G_{6}^{1/2} +\zeta _{7} +\zeta _{8} G_{6}^{1/2} \lambda _{2} ,\quad \eta _{4} =\zeta _{2} +G_{6}^{1/2} \left( {\zeta _{3} \lambda _{2} +\zeta _{6} \lambda _{1} +\zeta _{8} \lambda _{3}} \right) , \nonumber \\ \eta _{5}= & {} \zeta _{1} +G_{6}^{1/2} \left( {\zeta _{3} \lambda _{1} +\zeta _{8} \lambda _{4} } \right) ,\quad \eta _{6} =\zeta _{5} +G_{6}^{1/2} \left( {\zeta _{6} \lambda _{2} +\zeta _{8} \lambda _{5} } \right) , \nonumber \\ \eta _{7}= & {} G_{6}^{1/2} \left( {\zeta _{3} \lambda _{3} +\zeta _{6} \lambda _{4} +\zeta _{8} \lambda _{6} } \right) , \quad \eta _{8} =G_{6}^{1/2} \left( {\zeta _{3} \lambda _{5} +\zeta _{6} \lambda _{3} +\zeta _{8} \lambda _{7} } \right) , \nonumber \\ \eta _{9}= & {} G_{6}^{1/2} \left( {\zeta _{3} \lambda _{4} +\zeta _{8} \lambda _{8} } \right) ,\quad \eta _{10} =G_{6}^{1/2} \left( {\zeta _{6} \lambda _{5} +\zeta _{8} \lambda _{9} } \right) . \end{aligned}$$
(F.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobadi, A., Beni, Y.T. & Golestanian, H. Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field. Arch Appl Mech 90, 2025–2070 (2020). https://doi.org/10.1007/s00419-020-01708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01708-0

Keywords

Navigation