Skip to main content
Log in

High-order free vibration analysis of elastic plates with multiple cutouts

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

This article has been updated

Abstract

This paper aims to conduct the free vibration analysis of single-layer and laminated composite plates with multiple cutouts based on the scaled boundary finite element method (SBFEM) incorporated with the precise integration method (PIM) and the technique of the degree of freedom transform. It is applicable to a variety of shaped plates containing cordiform, circular and other complicated cutouts. The key equations are formulated built on the two-dimensional model, and the discretization is carried out in terms of only three translational displacement components as the basic unknowns. The high-order spectral elements are applied in the proposed technique to accurately simulate the arc boundaries of cutouts. Characterized by the important semi-analytical feature of the SBFEM, responses of the transverse free vibration are accurately explored. The derivation of governing equations strictly follows the 3D theory of elasticity without introducing any assumptions. The general solution of the SBFEM key equation is in the form of the matrix exponent, which is calculated by the PIM. As a type of highly precise approach, the PIM is introduced to create the global stiffness matrix from the analytical exponential matrix, which can make sure the eigensolutions with enough accuracy. Aided by the methodology of the kinetic energy formula, the global mass matrix of the perforated plate structure is constructed. According to the thin plates, the degree of freedom transform is employed to lower the dimensions of eigenvalue equation and thus improve the computational efficiency. Numerical examples of flexible square and circular plates with various cutouts reveal that excellent agreement is achieved between the natural frequencies predicted by the developed method and those from other methods and exact solutions. Furthermore, the effect of boundary conditions, skew angles, thickness-to-length ratios and sizes of cutouts on distributions of vibration frequencies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 13 January 2021

    Journal abbreviated title on top of the page has been corrected to “Arch Appl Mech”

References

  1. Paramasivam, P.: Free vibration of square plates with square openings. J. Sound Vib. 30, 173–178 (1973)

    Article  Google Scholar 

  2. Rajamani, A., Prabhakaran, R.: Dynamic response of composite plates with cut-outs, part I: simply-supported plates. J. Sound Vib. 54(4), 549–564 (1977)

    Article  MATH  Google Scholar 

  3. Rajamani, A., Prabhakaran, R.: Dynamic response of composite plates with cut-outs, part II: clamped-clamped plates. J. Sound Vib. 54(4), 565–576 (1977)

    Article  MATH  Google Scholar 

  4. Basdekas, N.L., Chi, M.: Dynamic response of plates with cut-outs. Shock Vib. Bull. 41, 29–35 (1970)

    Google Scholar 

  5. Ali, R., Atwal, S.J.: Prediction of natural frequencies of vibration of rectangular plates with rectangular cutouts. Comput. Struct. 12(6), 819–823 (1980)

    Article  MATH  Google Scholar 

  6. Young, P.G., Yuan, J., Dickinson, S.M.: Three-dimensional analysis of the free vibration of thick rectangular plates with depressions, grooves or cut-outs. J. Vib. Acoust. 118(2), 184–189 (1996)

    Article  Google Scholar 

  7. Huang, M., Sakiyama, T.: Free vibration analysis of rectangular plates with variously-shaped holes. J. Sound Vib. 226(4), 769–786 (1999)

    Article  MATH  Google Scholar 

  8. Avalos, D.R., Laura, P.A.: Transverse vibrations of simply supported rectangular plates with two rectangular cutouts. J. Sound Vib. 267, 967–977 (2003)

    Article  Google Scholar 

  9. Sakiyama, T., Huang, M., Matsuda, H., Morita, C.: Free vibration of orthotropic square plates with a square hole. J. Sound Vib. 259(1), 63–80 (2003)

    Article  Google Scholar 

  10. Lee, W.M., Chen, J.T., Lee, Y.T.: Free vibration analysis of circular plates with multiple circular holes using indirect BIEMs. J. Sound Vib. 304(3–5), 811–830 (2007)

    Article  Google Scholar 

  11. Kwak, M.K., Han, S.: Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method. J. Sound Vib. 306(1–2), 12–30 (2007)

    Article  Google Scholar 

  12. Mirkhalaf, S.M.: Transverse vibration of clamped and simply supported circular plates with an eccentric circular perforation and attached concentrated mass. J. Solid Mech. 1(1), 37–44 (2009)

    Google Scholar 

  13. Park, T., Lee, S.Y., Voyiadjis, G.Z.: Finite element vibration analysis of composite skew laminates containing delaminations around quadrilateral cutouts. Compos. B Eng. 40(3), 225–236 (2009)

    Article  Google Scholar 

  14. Lee, W.M., Chen, J.T.: Eigensolutions of a circular flexural plate with multiple circular holes by using the direct BIEM and addition theorem. Eng. Anal. Bound. Elem. 34(12), 1064–1071 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee, W.M., Chen, J.T.: Free vibration analysis of a circular plate with multiple circular holes by using indirect BIEM and addition theorem. J. Appl. Mech. 78(1), 011015 (2011)

    Article  Google Scholar 

  16. Ovesy, H.R., Fazilati, J.: Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches. Compos. Struct. 94(3), 1250–1258 (2012)

    Article  Google Scholar 

  17. Saeedi, K., Leo, A., Bhat, R.B., Stiharu, I.: Vibration of circular plate with multiple eccentric circular perforations by the Rayleigh-Ritz method. J. Mech. Sci. Technol. 26(5), 1439–1448 (2012)

    Article  Google Scholar 

  18. Cho, D.S., Vladimir, N., Choi, T.M.: Approximate natural vibration analysis of rectangular plates with openings using assumed mode method. Int. J. Naval Architect. Ocean Eng. 5(3), 478–491 (2013)

    Article  Google Scholar 

  19. Mali, K.D., Singru, P.M.: Determination of the fundamental frequency of perforated rectangular plates: concentrated negative mass approach for the perforation. Adv. Acoust. Vib. 2013, 972409 (2013)

    Google Scholar 

  20. Chen, Y., Jin, G., Liu, Z.: Flexural and in-plane vibration analysis of elastically restrained thin rectangular plate with cutout using Chebyshev–Lagrangian method. Int. J. Mech. Sci. 89, 264–278 (2014)

    Article  Google Scholar 

  21. Hasheminejad, S.M., Ghaheri, A.: Exact solution for free vibration analysis of an eccentric elliptical plate. Arch. Appl. Mech. 84(4), 543–552 (2014)

    Article  MATH  Google Scholar 

  22. Hasheminejad, S.M., Vaezian, S.: Free vibration analysis of an elliptical plate with eccentric elliptical cut-outs. Meccanica 49(1), 37–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Torabi, K., Azadi, A.R.: Vibration analysis for rectangular plate having a circular central hole with point support by Rayleigh–Ritz method. J. Solid Mech. 6(1), 28–42 (2014)

    Google Scholar 

  24. Torabi, K., Azadi, A.R.: A new approach to the study of transverse vibrations of a rectangular plate having a circular central hole. J. Solid Mech. 6(2), 135–149 (2014)

    Google Scholar 

  25. Mali, K.D., Singru, P.M.: Determination of modal constant for fundamental frequency of perforated plate by Rayleigh’s method using experimental values of natural frequency. Int. J. Acoust. Vib. 20(3), 177–184 (2015)

    Google Scholar 

  26. Mondal, S., Patra, A.K., Chakraborty, S., Mitra, N.: Dynamic performance of sandwich composite plates with circular hole/cut-out: a mixed experimental-numerical study. Compos. Struct. 131, 479–489 (2015)

    Article  Google Scholar 

  27. Yin, S., Yu, T., Bui, T.Q., Xia, S., Hirose, S.: A cutout isogeometric analysis for thin laminated composite plates using level sets. Compos. Struct. 127, 152–164 (2015)

    Article  Google Scholar 

  28. Cho, D.S., Kim, B.H., Kim, J.H., Vladimir, N., Choi, T.M.: Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries. Int. J. Naval Architect. Ocean Eng. 8(2), 117–126 (2016)

    Article  Google Scholar 

  29. Fantuzzi, N., Tornabene, F.: Strong formulation isogeometric analysis (SFIGA) for laminated composite arbitrarily shaped plates. Compos. B Eng. 96, 173–203 (2016)

    Article  Google Scholar 

  30. Huang, B., Wang, J., Du, J., Ma, T., Guo, Y., Qain, Z.: Vibration analysis of a specially orthotropic composite laminate with rectangular cutout using independent coordinate coupling method. Compos. Struct. 150, 53–61 (2016)

    Article  Google Scholar 

  31. Kalita, K., Haldar, S.: Free vibration analysis of rectangular plates with central cutout. Cogent. Eng. 3(1), 1163781 (2016)

    Article  Google Scholar 

  32. Noga, S.: Numerical and experimental analyses of vibrations of annular plates with multiple eccentric holes. Strength Mater. 48(4), 524–532 (2016)

    Article  Google Scholar 

  33. Shufrin, I., Eisenberger, M.: Semi-analytical modeling of cutouts in rectangular plates with variable thickness-free vibration analysis. Appl. Math. Model. 40(15–16), 6983–7000 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S., Hirose, S.: NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin Walled Struct. 101, 141–156 (2016)

    Article  Google Scholar 

  35. Kishore, M.L.P., Bezawada, S., Reddy, B.C.R.K.: Modal analysis of rectangular plate with central hole subjected to various end conditions. Mater. Today Proc. 4(2), 1653–1661 (2017)

    Article  Google Scholar 

  36. Mandal, A., Ray, C., Haldar, S.: Free vibration analysis of laminated composite skew plates with cut-out. Arch. Appl. Mech. 87(9), 1511–1523 (2017)

    Article  Google Scholar 

  37. Merneedi, A., RaoNalluri, M., Rao, V.V.S.: Free vibration analysis of a thin rectangular plate with multiple circular and rectangular cut-outs. J. Mech. Sci. Technol. 31(11), 5185–5202 (2017)

    Article  Google Scholar 

  38. Senjanović, I., Hadžić, N., Vladimir, N.: Vibration analysis of thin circular plates with multiple openings by the assumed mode method. Proc. Inst. Mech. Eng. Part M J. Eng. Maritime Environ. 231(1), 70–85 (2017)

    Google Scholar 

  39. Liu, Y., Lin, Z., Ding, H., Jin, G.Y., Yan, S.S.: A modified fourier–ritz formulation for vibration analysis of arbitrarily restrained rectangular plate with cutouts. In: Shock and Vibration (2018)

  40. Shi, S.X., Xiao, B., Jin, G.Y., Gao, C.: Modeling and simulation of transverse free vibration analysis of a rectangular plate with cutouts using energy principles. In: Shock and Vibration 9609745 (2018)

  41. Venkateshappa, S.C., Kumar, P., Ekbote, T.: Free vibration studies on plates with central cut-out. CEAS Aeronaut. J. 1–10 (2018)

  42. Zhang, Y.P., Wang, C.M., Pedroso, D.M., Zhang, H.: Extension of Hencky bar-net model for vibration analysis of rectangular plates with rectangular cutouts. J. Sound Vib. 432, 65–87 (2018)

    Article  Google Scholar 

  43. Song, C., Wolf, J.P.: The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics. Comput. Methods Appl. Mech. Eng. 147(3–4), 329–355 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wolf, J.P., Song, C.: The scaled boundary finite-element method-a primer: derivations. Comput. Struct. 78(1–3), 191–210 (2000)

    Article  Google Scholar 

  45. Song, C., Wolf, J.P.: The scaled boundary finite-element method-a primer: solution procedures. Comput. Struct. 78(1–3), 211–225 (2000)

    Article  Google Scholar 

  46. Li, G., Dong, Z.Q., Li, H.N., Yang, Y.B.: Seismic collapse analysis of concentrically-braced frames by the IDA method. Adv. Steel Construct. 13(3), 273–292 (2017)

    Google Scholar 

  47. Li, G., Dong, Z.Q., Li, H.N.: Simplified collapse-prevention evaluation for the reserve system of low-ductility steel concentrically braced frames. J. Struct. Eng. 144(7), 04018071 (2018)

    Article  Google Scholar 

  48. Li, G., Jia, S., Yu, D.H., Li, H.N.: Woodbury approximation method for structural nonlinear analysis. J. Eng. Mech. 144(7), 04018052 (2018)

    Google Scholar 

  49. Li, G., Yu, D.H.: Efficient inelasticity-separated finite-element method for material nonlinearity analysis. J. Eng. Mech. 144(4), 04018008 (2018)

    Google Scholar 

  50. Li, G., Yu, D.H., Li, H.N.: Seismic response analysis of reinforced concrete frames using inelasticity-separated fiber beam-column model. Earthq. Eng. Struct. Dyn. 47(5), 1291–1308 (2018)

    Article  Google Scholar 

  51. Yu, D.H., Li, G., Li, H.N.: Improved Woodbury solution method for nonlinear analysis with high-rank modifications based on a sparse approximation approach. J. Eng. Mech. 144(11), 04018103 (2018)

    Google Scholar 

  52. Li, G., Jin, Y.Q., Yu, D.H., Li, H.N.: Efficient woodbury-CA hybrid method for structures with material and geometric nonlinearities. J. Eng. Mech. 145(9), 04019070 (2019)

    Google Scholar 

  53. Fu, X., Li, H.N., Li, G., Dong, Z.Q.: Fragility analysis of a transmission tower under combined wind and rain loads. J. Wind Eng. Ind. Aerodyn. 199, 104098 (2020)

    Article  Google Scholar 

  54. Li, G., Li, J.L., Yu, L., Yu, D.H., Dong, Z.Q.: Improved Woodbury approximation approach for inelasticity-separated solid model analysis. Soil Dyn. Earthq. Eng. 129, 105926 (2020)

    Article  Google Scholar 

  55. Chen, X., Birk, C., Song, C.: Time-domain analysis of wave propagation in 3-D unbounded domains by the scaled boundary finite element method. Soil Dyn. Earthq. Eng. 75, 171–182 (2015)

    Article  Google Scholar 

  56. Chen, X., Birk, C., Song, C.: Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method. Comput. Geotech. 63, 1–12 (2015)

    Article  Google Scholar 

  57. Li, C., Song, C., Man, H., Ooi, E.T., Gao, W.: 2D dynamic analysis of cracks and interface cracks in piezoelectric composites using the SBFEM. Int. J. Solids Struct. 51(11–12), 2096–2108 (2014)

    Article  Google Scholar 

  58. Chen, X., Luo, T., Ooi, E.T., Ooi, E.H., Song, C.: A quadtree-polygon-based scaled boundary finite element method for crack propagation modeling in functionally graded materials. Theor. Appl. Fract. Mech. 94, 120–133 (2018)

    Article  Google Scholar 

  59. Xing, W., Song, C., Tin-Loi, F.: A scaled boundary finite element based node-to-node scheme for 2D frictional contact problems. Comput. Methods Appl. Mech. Eng. 333, 114–146 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Xing, W., Zhang, J., Song, C., Tin-Loi, F.: A node-to-node scheme for three-dimensional contact problems using the scaled boundary finite element method. Comput. Methods Appl. Mech. Eng. 347, 928–956 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ooi, E.T., Song, C., Natarajan, S.: A scaled boundary finite element formulation for poroelasticity. Int. J. Numer. Meth. Eng. 114(8), 905–929 (2018)

    Article  MathSciNet  Google Scholar 

  62. Zou, D., Teng, X., Chen, K., Liu, J.: A polyhedral scaled boundary finite element method for three-dimensional dynamic analysis of saturated porous media. Eng. Anal. Bound. Elem. 101, 343–359 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  63. Man, H., Song, C., Gao, W., Tin-Loi, F.: A unified 3D-based technique for plate bending analysis using scaled boundary finite element method. Int. J. Numer. Meth. Eng. 91(5), 491–515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Man, H., Song, C., Xiang, T., Gao, W., Tin-Loi, F.: High-order plate bending analysis based on the scaled boundary finite element method. Int. J. Numer. Meth. Eng. 95(4), 331–360 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Man, H., Song, C., Gao, W., Tin-Loi, F.: Semi-analytical analysis for piezoelectric plate using the scaled boundary finite-element method. Comput. Struct. 137, 47–62 (2014)

    Article  Google Scholar 

  66. Xiang, T., Natarajan, S., Man, H., Song, C., Gao, W.: Free vibration and mechanical buckling of plates with in-plane material inhomogeneity-A three dimensional consistent approach. Compos. Struct. 118, 634–642 (2014)

    Article  Google Scholar 

  67. Li, J., Shi, Z., Ning, S.: A two-dimensional consistent approach for static and dynamic analyses of uniform beams. Eng. Anal. Boundary Elem. 82, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  68. Lin, G., Zhang, P., Liu, J., Li, J.B.: Analysis of laminated composite and sandwich plates based on the scaled boundary finite element method. Compos. Struct. 187, 579–592 (2018)

    Article  Google Scholar 

  69. Zhang, P., Qi, C., Fang, H., Ma, C., Huang, Y.S.: Semi-analytical analysis of static and dynamic responses for laminated magneto-electro-elastic plates. Compos. Struct. 222, 110933 (2019)

    Article  Google Scholar 

  70. Dölling, S., Hahn, J., Felger, J., Bremm, S., Becker, W.: A scaled boundary finite element method model for interlaminar failure in composite laminates. Compos. Struct. 241, 111865 (2020)

    Article  Google Scholar 

  71. Wallner, M., Birk, C., Gravenkamp, H.: A scaled boundary finite element approach for shell analysis. Comput. Methods Appl. Mech. Eng. 361, 112807 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang, P., Qi, C., Fang, H., He, W.: Three dimensional mechanical behaviors of in-plane functionally graded plates. Compos. Struct. 112124 (2020)

  73. Zhang, P., Qi, C., Fang, H., Sun, X.: A semi-analytical approach for the flexural analysis of in-plane functionally graded magneto-electro-elastic plates. Compos. Struct. 112590 (2020)

  74. Zhong, W.X.: On precise integration method. J. Comput. Appl. Math. 163(1), 59–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by Grants 2018M641168, 2018M641169 from China Postdoctoral Science Foundation, Grants 51908022 from the National Natural Science Foundation of China, Grants 19YJC630148 from the Humanity and Social Science Youth foundation of Ministry of Education of China, for which the authors are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengchong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhang, P., Qiao, H. et al. High-order free vibration analysis of elastic plates with multiple cutouts. Arch Appl Mech 91, 1837–1858 (2021). https://doi.org/10.1007/s00419-020-01857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01857-2

Keywords

Navigation