Skip to main content
Log in

Criteria of vibration control in delayed third-order critically damped Duffing oscillation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Control forces of delayed third-order critically damped Duffing equation is proposed in this study. The analytical solution is based on the modified HPM. The solution is demonstrated by introducing a proper function used to suppress the vibration of the nonlinear oscillations. The outcome of the modified homotopy expansion by the exponential negative delay parameter reveals that approximations using this technique are more accurate. To test the accuracy of the recommended modified technique, the obtained results are compared with the numerical solution. Excellent agreement with numerical testing is observed. Further, the suggested control function is eligible for establishing highly accurate approximate analytical frequency and periodic solutions. Based on He’s frequency formula a quasi-exact solution for the nonlinear oscillation has been derived. It is effective and simple to utilize analytic tools for nonlinear problems. These results reveal the accuracy and quality of the suggested technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

y :

Displacement variable

t :

Independent variable

P :

First damping coefficient

\(\mu\) :

Second damping coefficient

\(\sigma\) :

Linear frequency

\(Q\) :

Duffing coefficient

\(\eta\) :

Coefficient of velocity control force

\(\lambda\) :

Coefficient of displacement control force

\(\tau\) :

Time-delay parameter

\(\Omega\) :

Total frequency(non-conservative frequency)

A :

Amplitude of the oscillation

\(U(t)\) :

Transformed variable

\(\phi\) :

Proper decay parameter

\(\alpha\) :

First damped coefficient of the linearized equation

\(\beta\) :

Second damped coefficient of the linearized equation

\(\omega\) :

He’s frequency (conservative frequency)

References

  1. Ardjouni, A., Djoudi, A.: Existence of periodic solutions for a second-order nonlinear neutral differential equation with variable delay. Palest. J. Math. 3(2), 191–197 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Ardjouni, A., Djoudi, A., Rezaiguia, A.: Existence of positive periodic solutions for two types of third-order nonlinear neutral differential equations with variable delay. Appl. Math. E-Notes 14, 86–96 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Berg, J.B., Groothedde, C., Lessard, J.-P.: A general method for computer-assisted proofs of periodic solutions in delay differential problems. J. Dyn. Diff. Equ. (2020). https://doi.org/10.1007/s10884-020-09908-6

    Article  Google Scholar 

  4. Macari, A.: Vibration control for the primary resonance of a cantilever beam by a time delay state feedback. J. Sound Vib. 259, 241–251 (2003)

    Article  MathSciNet  Google Scholar 

  5. Xu, J., Chung, K.W., Zhao, Y.Y.: Delayed saturation controller for vibration suppression in stainless-steel beam. Nonlinear Dyn. 62, 177–193 (2010)

    Article  Google Scholar 

  6. Saeed, N.A., Eissa, M., El-Ganaini, W.A.: Nonlinear time delay saturation-based controller for suppression of nonlinear beam vibrations. Appl. Math. Model. 37, 8846–8864 (2013)

    Article  MathSciNet  Google Scholar 

  7. Alhazza, K.A., Majeed, M.A.: Free vibrations control of a cantilever beam using combined time-delay feedback. J. Vib. Control 18(5), 609–621 (2011)

    Article  MathSciNet  Google Scholar 

  8. Saeed, N.A., El-Ganini, W.A.: Time-delayed control to suppress the nonlinear vibrations of a horizontally suspended Jeffcott rotor system. Appl. Math. Model. 44, 523–539 (2017)

    Article  MathSciNet  Google Scholar 

  9. Sun, X., Xu, J., Fu, J.: The effect and design of time delay in feedback control for a nonlinear isolation system. Mech. Syst. Signal Process. 87, 206–217 (2017)

    Article  Google Scholar 

  10. Meng, H., Sun, X., Xu, J., Wang, F.: The generalization of equal-peak method for delay-coupled nonlinear system. Phys. D 403, 132340 (2020)

    Article  MathSciNet  Google Scholar 

  11. Wang, F., Sun, X., Meng, H., Xu, J.: Time-delayed feedback control design and its application for vibration absorption. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.3009612

    Article  Google Scholar 

  12. Penga, J., Zhang, G., Xiang, M., Sun, H., Wang, X., Xie, X.: Vibration control for the nonlinear resonant response of a piezoelectric elastic beam via time-delayed feedback. Smart Mater. Struct. 28, 095010 (2019)

    Article  Google Scholar 

  13. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  14. El-Dib, Y.O.: Multiple scales homotopy perturbation method for nonlinear oscillators. Nonlinear Sci. Lett. A 9, 352–364 (2017)

    Google Scholar 

  15. El-Dib, Y.O.: Multi-homotopy perturbation technique for solving nonlinear partial differential equations with Laplace transforms. Nonlinear Sci. Lett. A 9, 349–359 (2018)

    Google Scholar 

  16. El-Dib, Y.O.: Stability analysis of a strongly displacement time-delayed Duffing oscillator using multiple scales homotopy perturbation method. J. Appl. Comput. Mech. 4, 260–274 (2018)

    Google Scholar 

  17. El-Dib, Y.O.: Stability approach for periodic delay Mathieu equation by the He-multiple-scales method. Alex. Eng. J. 57, 4009–4020 (2018)

    Article  Google Scholar 

  18. El-Dib, Y.O.: Periodic solution of the cubic nonlinear Klein-Gordon equation and the stability criteria via the He’s multiple scales method. Pramana J. Phys. 92, 7 (2019)

    Article  Google Scholar 

  19. El-Dib, Y.O.: Modified multiple scale technique for the stability of the fractional delayed nonlinear oscillator. Pramana J. Phys. 94, 56 (2020). https://doi.org/10.1007/s12043-020-1930-0

    Article  Google Scholar 

  20. El-Dib, Y.O., Elgazery, N.S.: Effect of fractional derivative properties on the periodic solution of the nonlinear oscillations. Fractals 28(4), 2050095 (2020). https://doi.org/10.1142/S0218348X20500954

    Article  Google Scholar 

  21. El-Dib, Y.O., Moatimid, G.M.: Stability configuration of a rocking rigid rod over a circular surface using the homotopy perturbation method and Laplace transform. Arab. J. Sci. Eng. 44, 6581–6659 (2019)

    Article  Google Scholar 

  22. El-Dib, Y.O., Moatimid, G.M., Elgazery, N.S.: Stability analysis of a damped nonlinear wave equation. J. Appl. Comput. Mech. 6, 1394–1403 (2020). https://doi.org/10.22055/JACM.2020.34053.2329

    Article  Google Scholar 

  23. He, J.-H., El-Dib, Y.O.: Homotopy perturbation method for Fangzhu oscillator. J. Math. Chem. (2020). https://doi.org/10.1007/s10910-020-01167-6

    Article  MathSciNet  MATH  Google Scholar 

  24. He, J.-H., El-Dib, Y.O.: Periodic property of the time-fractional Kundu–Mukherjee–Naskar equation. Results Phys. 19, 103345 (2020). https://doi.org/10.1016/j.rinp.2020.103345

    Article  Google Scholar 

  25. Ren, Z.-F., Yao, S.-W., He, J.-H.: He’s multiple scales method for nonlinear vibrations. J. Low Freq. Noise Vib. Active Control 38, 1708–1712 (2019)

    Article  Google Scholar 

  26. Royer, J.: Energy decay for the Klein-Gordon equation with highly oscillating damping. Ann. H. Lebesgue 1, 297–312 (2018). https://doi.org/10.5802/ahl.9

    Article  MathSciNet  MATH  Google Scholar 

  27. Hamid, M.S., Kourosh, H.S., Zare, J.: An analytic solution of transversal oscillation of quantic non-linear beam with homotopy analysis method. Int. J. Non-Linear Mech. 47, 777–784 (2012). https://doi.org/10.1016/j.ijnonlinmec.2012.04.008

    Article  Google Scholar 

  28. Hamid, M.S.: Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronaut. 95, 111–123 (2014). https://doi.org/10.1016/j.actaastro.2013.10.020

    Article  Google Scholar 

  29. He, J.-H., El-Dib, Y.O.: The reducing rank method to solve third-order Duffing equation with the homotopy perturbation. Numer. Methods Part. Differ. Equ. (2020). https://doi.org/10.1002/num.22609

    Article  Google Scholar 

  30. Tejumola, H.O., Tchegnani, B.: Stability, boundedness and existence of periodic solutions of some third order and fouth-order nonlinear delay differential equations. J. Niger. Math. Soc. 19, 9–19 (2000)

    Google Scholar 

  31. Abou-El-Ela, A. M., Sadek, A. I. Mahmoud, A. M.: Existence and uniqueness of a periodic solution for third-order delay differential equation with two deviating arguments, IAENG Int. J. Appl. Math., 42 (1), IJMA−42−1−02 (2012)

  32. Tunç, C.: Existence of periodic solutions to nonlinear differential equations of third order with multiple deviating arguments. Int. J. Differ. Equ (2012). https://doi.org/10.1155/2012/406835

    Article  MathSciNet  MATH  Google Scholar 

  33. Ademola, A.T.: Existence and uniqueness of a periodic solution to certain third-order nonlinear delay differential equation with multiple deviating arguments. Acta Univ. Sapientiae Math. 5(2), 113–131 (2013). https://doi.org/10.2478/ausm-2014-0008

    Article  MathSciNet  MATH  Google Scholar 

  34. Ademola, A.T., Arawomo, P.O.: Uniform stability and boundedness of solutions of nonlinear delay differential equations of the third order. Math. J. Okayama Univ. 55, 157–166 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Nouioua, F., Ardjouni, A., Merzougui, A., Djoudi, A.: Existence of positive periodic solutions for a third-order delay differential equation. Int. J. Anal. Appl. 13(2), 136–143 (2017)

    MATH  Google Scholar 

  36. He, J.-H., El-Dib, Y.O., Mady, A.A.: Homotopy perturbation method for the fractal toda oscillator. Fractal Fract. 5, 93 (2021). https://doi.org/10.3390/fractalfract5030093

    Article  Google Scholar 

  37. Gregus, M.: Third order linear differential equations. Reidel, Dordrecht (1987)

    Book  Google Scholar 

  38. Xu, X.X., Ma, S.J., Huang, P.T.: New concepts in electromagnetic jerky dynamics and their applications in transient processes of electric circuit. Progress Electromagn. Res. 8, 181 (2009)

    Article  Google Scholar 

  39. Gottlieb, H.: Harmonic balance approach to periodic solutions of non-linear jerk equations. J. Sound Vib. 271, 671–683 (2004). https://doi.org/10.1016/S0022-460X(03)00299-2181194

    Article  MathSciNet  MATH  Google Scholar 

  40. Schot, S.H.: The time rate of change of acceleration. Am J Phys 46, 1090–1094 (1978). https://doi.org/10.1119/1.11504

    Article  Google Scholar 

  41. Anu, N., Marinca, V.: Approximate analytical solutions to jerk equations. Dyn. Syst. Theor. Exp. Anal. lódź 7–10, 169–176 (2016)

    MathSciNet  Google Scholar 

  42. Bloxham, J., Zatman, S., Dumberry, M.: The origin of geomagnetic jerks. Nature 420, 65–68 (2002)

    Article  Google Scholar 

  43. He, J.-H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)

    Article  MathSciNet  Google Scholar 

  44. He, J.-H.: Homotopy perturbation method with two expanding parameters. Indian J. Phys. 88, 193–196 (2014)

    Article  Google Scholar 

  45. He, J.-H., El-Dib, Y.O.: Homotopy perturbation method with three expansions. J. Math. Chem. (2021). https://doi.org/10.1007/s10910-021-01237-3

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen, Y., El-Dib, Y.O.: A periodic solution of the fractional sine-Gordon equation arising in architectural engineering. J. Low Freq. Noise Vib. Active Control (2021). https://doi.org/10.1177/1461348420917565

    Article  Google Scholar 

  47. El-Dib, Y.O.: The frequency estimation for non-conservative nonlinear oscillation. Z. Angew. Math. Mech. (2021). https://doi.org/10.1002/zamm.202100187

    Article  Google Scholar 

  48. He, J.H.: The simpler, the better: analytical methods for nonlinear oscillators and fractional oscillators. J. Low Freq. Noise Vib. Active Control 38, 1252–1260 (2019)

    Article  Google Scholar 

  49. He, C.-H., Liu, C., He, J.-H., Shirazi, A.H., Sedighi, H.M.: Passive atmospheric water harvesting utilizing an ancient Chinese ink slab. Facta Univ.-Series Mech. Eng. (2021). https://doi.org/10.22190/FUME201203001H

    Article  Google Scholar 

  50. He, J.-H., Hou, W.-F., Qie, N., Gepreel, K.A., Shirazi, A.H., Sedighi, H.M.: Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. Facta Univ. Ser. Mech. Eng. (2021). https://doi.org/10.22190/FUME201205002H

    Article  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusry O. El-Dib.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests regarding the publication of the present paper.

Data availability

No data, models, or code was generated or used during the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dib, Y.O. Criteria of vibration control in delayed third-order critically damped Duffing oscillation. Arch Appl Mech 92, 1–19 (2022). https://doi.org/10.1007/s00419-021-02039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02039-4

Keywords

Navigation