Skip to main content

Advertisement

Log in

Long-term dry immersion: review and prospects

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Dry immersion, which is a ground-based model of prolonged conditions of microgravity, is widely used in Russia but is less well known elsewhere. Dry immersion involves immersing the subject in thermoneutral water covered with an elastic waterproof fabric. As a result, the immersed subject, who is freely suspended in the water mass, remains dry. For a relatively short duration, the model can faithfully reproduce most physiological effects of actual microgravity, including centralization of body fluids, support unloading, and hypokinesia. Unlike bed rest, dry immersion provides a unique opportunity to study the physiological effects of the lack of a supporting structure for the body (a phenomenon we call ‘supportlessness’). In this review, we attempt to provide a detailed description of dry immersion. The main sections of the paper discuss the changes induced by long-term dry immersion in the neuromuscular and sensorimotor systems, fluid–electrolyte regulation, the cardiovascular system, metabolism, blood and immunity, respiration, and thermoregulation. The long-term effects of dry immersion are compared with those of bed rest and actual space flight. The actual and potential uses of dry immersion are discussed in the context of fundamental studies and applications for medical support during space flight and terrestrial health care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams GR, Caiozzo VJ, Baldwin KM (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95:2185–2201

    PubMed  Google Scholar 

  • Afonin BV, Sedova EA (2009) Digestive system functioning during simulation of the microgravity effects on humans by immersion. Aviakosm Ekolog Med 43:48–52 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Anashkin OD, Beliaev SM (1982) Effect of sidnocarb during 7-day water immersion on the cardiorespiratory system under physical load. Kosm Biol Aviakosm Med 16:28–31 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Arbeille P, Herault S, Fomina G, Roumy J, Alferova I, Gharib C (1999) Influences of thigh cuffs on the cardiovascular system during 7-day head-down bed rest. J Appl Physiol 87:2168–2176

    PubMed  CAS  Google Scholar 

  • Arborelius M Jr, Ballidin UI, Lilja B, Lundgren CE (1972) Hemodynamic changes in man during immersion with the head above water. Aerosp Med 43:592–598

    PubMed  Google Scholar 

  • Atkov OY, Bednenko VS (1992) Hypokinesia and weightlessness: clinical and physiological aspects. International Universities Press, USA

    Google Scholar 

  • Baecker N, Tomic A, Mika C, Gotzmann A, Platen P, Gerzer R, Heer M (2003) Bone resorption is induced on the second day of bed rest: results of a controlled crossover trial. J Appl Physiol 95:977–982

    PubMed  CAS  Google Scholar 

  • Baevsky RM (1979) Prognozirovanie sostoyanii na grani normy i patologii (Prediction of states on the verge of norm and pathology). Meditsina, Moscow

    Google Scholar 

  • Baevsky RM, Chernicova AG, Funtova II, Pashenko AV, Tank J (2004) The autonomous regulation system functional reserves evaluation in 7-day head-down bed rest. J Gravit Physiol 11:91–92

    Google Scholar 

  • Barer AS (2007) Water immersion as an anti-g protection for pilot. Pro et contra. Aviakosm Ekolog Med 41:3–19 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Baum K, Essfeld D (1999) Origin of back pain during bed rest: a new hypothesis. Eur J Med Res 4:389–393

    PubMed  CAS  Google Scholar 

  • Beliaev SM (1981) Effect of 1-day water immersion on the indices of the human cardiorespiratory system under physical load. Kosm Biol Aviakosm Med 15:24–26 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Berendeeva TA, Rykova MP, Antropova EN, Larina IM, Morukov BV (2009) Human immunity system status during 7-day dry immersion. Aviakosm Ekolog Med 43:36–42 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Berger M, Lechner-Steinleitner S, Kozlovskaya I, Marosi M, Mescheriakov S, Golaszewski S, Gerstenbrand F (2001) Neurological aspects in real and simulated spaceflight. In: Hinghofer-Szalkay H (ed) 10 years space biomedical research and development in Austria (ISBN 3-85076-572-5). Facultas Verlag Wien, pp 19–34

  • Bernstein NA (1947) O Postroenii Dvizenii (On the construction of movements). Medgiz, Moscow

    Google Scholar 

  • Berry CA (1973) Weightlessness. In: Parker JF, West VR (eds) Bioastronautic data book, 2nd edn. NASA, Washington, pp 349–416

    Google Scholar 

  • Blanc S, Normand S, Pachiaudi C, Fortrat JO, Laville M, Gharib C (2000) Fuel homeostasis during physical inactivity induced by bed rest. J Clin Endocrinol Metab 85:2223–2233

    Article  PubMed  CAS  Google Scholar 

  • Bravyi IaR, Bersenev EIu, Missina SS, Borovik AS, Sharova AP, Vinogradova OL (2008) Dry immersion effects on the mechanisms of metabolic-reflex regulation of hemodynamics during muscular work. Aviakosm Ekolog Med 42:40–45 (in Russian, English summary)

    PubMed  Google Scholar 

  • Buckey JC Jr, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Yancy CW Jr, Meyer DM, Blomqvist CG (1996a) Central venous pressure in space. J Appl Physiol 81:19–25

    PubMed  Google Scholar 

  • Buckey JC Jr, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, Gaffney FA, Blomqvist CG (1996b) Orthostatic intolerance after spaceflight. J Appl Physiol 81:7–18

    PubMed  Google Scholar 

  • Chaika AM, Balakhovskii IS (1982) Changes in plasma and extracellular fluid volumes and plasma protein mass under conditions of head-down tilt hypokinesia and immersion. Kosm Biol Aviakosm Med 16:22–28 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Chkhaidze LV (1968) Coordination of voluntary movements of man in the space flight environment. Nauka, Moscow, p 133

    Google Scholar 

  • Clement G, Pavy-Le Traon A (2004) Centrifugation as a countermeasure during actual and simulated microgravity: a review. Eur J Appl Physiol 92:235–248

    Article  PubMed  CAS  Google Scholar 

  • Cooke WH, Ames JE IV, Crossman AA, Cox JF, Kuusela TA, Tahvanainen KU, Moon LB, Drescher J, Baisch FJ, Mano T, Levine BD, Blomqvist CG, Eckberg DL (2000) Nine months in space: effects on human autonomic cardiovascular regulation. J Appl Physiol 89:1039–1045

    PubMed  CAS  Google Scholar 

  • Coupe M, Fortrat JO, Larina IM, Gauquelin-Koch G, Gharib C, Custaud MA (2009) Cardiovascular deconditioning: from autonomic nervous system to microvascular dysfunctions. Respir Physiol Neurobiol 169:S10–S12

    Article  PubMed  Google Scholar 

  • Cox JF, Tahvanaine KUO, Kuusela TA, Levine BD, Cooke WH, Mano T, Iwase S, Saito M, Sugiyama Y, Ertl AC, Biaggioni I, Diedrich A, Robertson RM, Zuckerman JH, Lane LD, Ray CA, White RJ, Pawelczyk JA, Buckey JC Jr, Baisch FJ, Blomqvist CG, Robertson D, Eckberg DL (2002) Influence of microgravity on sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 538:309–320

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Gonzalez I, Dejoseph-Gauthier D, Chia S, Raffel OC, Jang IK (2009) Non-invasive assessment of myocardial ischaemia by using low amplitude oscillations of the conventional ECG signals (ECG dispersion mapping) during percutaneous coronary intervention. Acta Cardiol 64:11–15

    Article  PubMed  Google Scholar 

  • Davydova NA, Tigranian RA, Shul’zhenko EB (1981) Human sympathetic-adrenal system during water immersion. Kosm Biol Aviakosm Med 15:30–34 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Egorov AD (1996) Qualification of human body reactions to microgravity. Aviakosm Ekolog Med 30:14–20 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Epstein M (1992) Renal effects of head-out water immersion in humans: a 15-year update. Physiol Rev 72(3):564–621

    Google Scholar 

  • Epstein M (1996) Renal, endocrine and hemodynamic effects of water immersion in humans. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, chap 37. Oxford University Press, New York, pp 845–853

    Google Scholar 

  • Epstein M, Norsk P, Loutzenhiser R (1989) Effects of water immersion on atrial natriuretic peptide release in humans. Am J Nephrol 9:1–24

    Article  PubMed  CAS  Google Scholar 

  • Ertl AC, Diedrich A, Biaggioni I, Levine BD, Robertson RM, Cox JF, Zuckerman JH, Pawelczyk JA, Ray CA, Buckey JC Jr, Lane LD, Shiavi R, Gaffney FA, Costa F, Holt C, Blomqvist CG, Eckberg DL, Baisch FJ, Robertson D (2002) Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol 538:321–329

    Article  PubMed  CAS  Google Scholar 

  • Eshmanova AK (2009) Heart rate variability and myocardium state: effect of “dry” immersion. PhD dissertation, Institute of Biomedical Problems, Moscow, Russia. Available via http://www.imbp.ru/WebPages/WIN1251/Science/DisserSov/Summarys/Eshmanova-ref.doc. Accessed 6 November 2010 (in Russian)

  • Eshmanova AK, Luchinskaia ES, Baevskii RM (2008) Investigation into vegetative regulation of blood circulation during 7-day dry immersion. Aviakosm Ekolog Med 42:45–51 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Eshmanova AK, Ivanov GG, Kabulova AZ, Luchitskaia ES, Baevskiĭ RM (2009) Parameters of high definition ECG and dispersion ECG mapping on the background of amlodipin and myostimulation during 7-day dry immersion. Aviakosm Ekolog Med 43:40–43 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Evdokimova AG, Radzevich AE, Solo’veva FV, Vinokhodova TV, Mamaev VI, Beliaev SM, Ovchinnikova LK (1989) Orthostatic tolerance and the status of central and peripheral hemodynamics during 7-day “dry” immersion in persons with neurocirculatory asthenia of the hypertensive type. Kosm Biol Aviakosm Med 23:62–65 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Foldager N, Andersen TA, Jessen FB, Ellegaard P, Stadeager C, Videbaek R, Norsk P (1996) Central venous pressure in humans during microgravity. J Appl Physiol 81:408–412

    PubMed  CAS  Google Scholar 

  • Fomin AN (1981) Blood fibrinogen during 7-day water immersion and short-term space flight. Kosm Biol Aviakosm Med 15:83–85 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Fomin IO, Orlov VN, Radzevich AE, Leskin GS (1985) Effect of water immersion on indices of central hemodynamics in subjects older than 45 years. Kosm Biol Aviakosm Med 19:37–40 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Fortney SM, Schneider VS, Greenleaf JE (1996) The physiology of bed rest. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, chap 39. Oxford University Press, New York, pp 889–939

    Google Scholar 

  • Fritsch-Yelle JM, Charles JB, Jones MM (1996) Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol 80:910–914

    PubMed  CAS  Google Scholar 

  • Fu Q, Levine BD, Pawelczyk JA, Ertl AC, Diedrich A, Cox JF, Zuckerman JH, Ray CA, Smith ML, Iwase S, Saito M, Sugiyama Y, Mano T, Zhang R, Iwasaki K, Lane LD, Buckey JC Jr, Cooke WH, Robertson RM, Baisch FJ, Blomqvist CG, Eckberg DL, Robertson D, Biaggioni I (2002) Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight. J Physiol 544:653–664

    Article  PubMed  CAS  Google Scholar 

  • Gazenko OG, Grigoriev AI, Kozlovskaya IB (1987) Mechanisms of acute and chronic effects of microgravity. Physiologist 30(1 Suppl):1–5

    Google Scholar 

  • Genin A, Galichii V (1995) Features of external respiration and pulmonary hyperemia in man during immersion. Aviakosm Ekolog Med 29:28–32 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Genin AM, Modin AIu, Shashkov VS (1988) Status of human hemodynamics during water immersion in different postures of immersion. Kosm Biol Aviakosm Med 22:7–10 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Gerstenbrand F, Kozlovskaya IB (1990) Neurological findings after 72-hours exposure to water immersion In: David V (ed) Life science research in space. ESA, France, pp 117–120

  • Gevlich GI, Grigor’eva LS, Boĭko MI, Kozlovskaia IB (1983) Evaluation of skeletal muscle tonus by the method of recording transverse rigidity. Kosm Biol Aviakosm Med 17:86–89 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Gogolev KI, Aleksandrova EA, Shul’zhenko EB (1980) Comparative assessment of changes during antiorthostatic hypokinesia and immersion in man. Hum Physiol 6:392–396 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Golovkina OL (1982) Human reaction of external respiration and gas exchange in the acute period of adaptation to water immersion. Kosm Biol Aviakosm Med 16:43–46 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Greenleaf JE (1984) Physiological responses to prolonged bed rest and fluid immersion in humans. J Appl Physiol 57:619–633

    PubMed  CAS  Google Scholar 

  • Greenleaf JE (1997) Exercise thermoregulation with bed rest, confinement, and immersion deconditioning. Ann N Y Acad Sci 813:741–750

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf JE, Bernauer EM, Young HL, Morse JT, Staley RW, Juhos LT, Van Beaumont W (1977) Fluid and electrolyte shifts during bed rest with isometric and isotonic exercise. J Appl Physiol 42:59–66

    PubMed  CAS  Google Scholar 

  • Grigor’ev AI, Shul’zhenko EB (1979) Effect of small gravitational loads on human water-salt metabolism and kidney function during prolonged immersion. Kosm Biol Aviakosm Med 13:27–31 (in Russian, English summary)

    PubMed  Google Scholar 

  • Grigor’ev AI, Kozlovskaia IB, Shenkman BS (2004) The role of support afferents in organisation of the tonic muscle system. Ross Fiziol Zh Im I M Sechenova 90:508–521 (in Russian, English summary)

    PubMed  Google Scholar 

  • Grigor’eva LS, Kozlovskaia IB (1983) Effect of 7-day immersion hyperkinesia on the response-strength properties of human skeletal muscles. Kosm Biol Aviakosm Med 17:21–25 (in Russian, English summary)

    PubMed  Google Scholar 

  • Grigor’eva LS, Kozlovskaia IB (1985) Effect of 7-day immersion hypokinesia on the characteristics of precise movements. Kosm Biol Aviakosm Med 19:38–42 (in Russian, English summary)

    PubMed  Google Scholar 

  • Gunga HC, Werner A, Stahn A, Steinach M, Schlabs T, Koralewski E, Kunz D, Belavý DL, Felsenberg D, Sattler F, Koch J (2009) The double sensor-A non-invasive device to continuously monitor core temperature in humans on earth and in space. Respir Physiol Neurobiol 169:S63–S68

    Article  PubMed  Google Scholar 

  • Homick J, Reschke M, Viller E (1977) The effects of prolonged exposure to weightlessness on postural equilibrium. In: Biomedical results from Skylab, NASA, SP-377, pp 104–112

  • Iarullin KhKh, Simonov LG, Vtoryi SA (1987) Changes in regional and central hemodynamics during a 7-day immersion in water. Kosm Biol Aviakosm Med 21:45–50 (in Russian, English summary)

    Google Scholar 

  • Il’in VK, Kriukov AI, Volozhin AI, Istranov LP, Istranova EV, Kiriukhina NV, Starkova LV, Morozova IuA, Usanova NA (2008a) Investigation of dysbiosis developing during “dry” immersion and methods of correction. Aviakosm Ekolog Med 42:70–74 (in Russian, English summary)

    PubMed  Google Scholar 

  • Ilyin VK, Kirjuhkhina NV, Usanova NA et al (2008b) Autostrains lactobacilli based probiotics for dysbacteriosis prophylaxis of humans in artificial environment. In: Conference proceedings of 3rd international probiotic conference 4–7 June 2008, High Tatras, Slovakia, pp 17. Available via http://www.probiotic.sk/files/IPC2008proceedings.pdf. Accessed 6 November 2010

  • Il’yina-Kakueva EI, Petrova NV, Portugalov VV (1979) Influence of spaceflight on skeletal muscles and muscle neural apparatus. In: Effects of dynamic factors of spaceflight on animals. M. Nauka, pp 95–104

  • Iunusov MA, Orlov VN, Vinokhodova TV (1985) Effect of the model of “dry” immersion on the indicators of water–electrolyte metabolism and aldosterone and cortisol in the plasma of persons with different levels of body water. Kosm Biol Aviakosm Med 19:42–45 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Ivanov SG, Bogomazov EE (1988) “Dry” immersion and prospects of its use in clinical practice. Kosm Biol Aviakosm Med 22:4–6 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Ivanov SG, Markova LI (1990) Use of a “dry” immersion method in the treatment of hypertensive crisis. Kosm Biol Aviakosm Med 24:40–42 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Ivanov AP, Goncharov IB, Davydkin AF, Lavrov VI (1983) Changes in several indicators of blood rheology in experiments simulating weightlessness. Kosm Biol Aviakosm Med 17:25–30 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Ivanova SM, Morukov BV, Maksimov GV, Bryzgalova NIu, Labetskaia OI, Iarlykova OI, Levina AA (2009) Investigation of the morphofunctional properties of human red blood cells under the conditions of 7-day dry immersion. Aviakosm Ekolog Med 43:43–47 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Iwase S, Sugiyama Y, Miwa C, Kamiya A, Mano T, Ohira Y, Shenkman B, Egorov AI, Kozlovskaya IB (2000) Effects of three days of dry immersion on muscle sympathetic nerve activity and arterial blood pressure in humans. J Auton Nerv Syst 79:156–164

    Article  PubMed  CAS  Google Scholar 

  • Kabulova AZ, Eshmanova AK (2008) The comparison of change in indices of heart rate variability and ECG variability in experiments with 7-day dry immersion and 7-day head down bed rest (in Russian). In: The proceedings of the 4th All-Russian symposium with international participation (Heart rate variability: theoretical aspects and practical application). Izhevsk, Russia, pp 110–113

  • Kakurin LI, Cherepakhin MA, Pervushin VN (1971) Influence of spaceflight factors on human muscle tone. Kosm Biol Med 2:63–68

    Google Scholar 

  • Kamenskii IuN, Shul’zhenko EB, Andreeva VG (1976) Effect of systematic gravitational forces on the external respiration function in conditions of prolonged immersion. Kosm Biol Aviakosm Med 10:40–45 (in Russian, English summary)

    PubMed  Google Scholar 

  • Kamiya A, Iwase S, Sugiyama Y, Mano T, Sudoh M (2000a) Vasomotor sympathetic nerve activity in men during bed rest and on orthostasis after bed rest. Aviat Space Environ Med 71:142–149

    PubMed  CAS  Google Scholar 

  • Kamiya A, Iwase S, Michikami D, Fu Q, Mano T (2000b) Head-down bed rest alters sympathetic and cardiovascular responses to mental stress. Am J Physiol 48:R440–R447

    Google Scholar 

  • Kamiya A, Iwase S, Kitazawa H, Mano T, Vinogradova OL, Kharchenko IB (2000c) Baroreflex control of muscle sympathetic nerve activity after 120 days of 6° head-down bed rest. Am J Physiol 278:R445–R452

    CAS  Google Scholar 

  • Kanikowska D, Sato M, Iwase S, Shimizu Y, Inukai Y, Nishimura N, Sugenoya J (2008) Immune and neuroendocrine responses to head-down rest and countermeasures. Aviat Space Environ Med 79:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Kazanskaya EV (2008) Physical rehabilitation as a part of recovery treatment of prematures with malfunctions of central nervous system. Scientific-theoretical magazine “Scientific notes of Lesgaft University” 12:21–25. Available via http://lesgaft-notes.spb.ru/files/arxiv/uz46.pdf. Accessed 6 November 2010 (in Russian, English summary)

  • Khristova LG, Gidikov AA, Asleanova IF, Kirenskaia AV, Kozlova VG (1986) Effect of immersion hypokinesia on the parameters of human muscle potentials. Kosm Biol Aviakosm Med 20:27–31 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Khristova LG, Gidikov AA, Aslanova IF, Beliaeva MG, Kirenskaia AV (1988) Effect of immersion hypokinesia on the motor unit potentials of human muscles. Kosm Biol Aviakosm Med 22:39–43 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Khusnutdinova D, Netreba A, Kozlovskaya I (2004) Mechanic stimulation of the soles support zones as a countermeasure of the contractile properties decline under microgravity conditions. J Gravit Physiol 11:141–142

    Google Scholar 

  • Kirenskaia AV, Kozlovskaia IB, Sirota MG (1985) Effect of immersion hypokinesia on the characteristics of programmed-type voluntary movements. Kosm Biol Aviakosm Med 19:27–32 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Kirenskaia AV, Tomilovskaia ES, Novototskiĭ-Vlasov VIu, Kozlovskaia IB (2006) The effects of simulated microgravity on characteristics of slow presaccadic potentials. Fiziol Cheloveka 32:10–19 (in Russian)

    PubMed  CAS  Google Scholar 

  • Kirichenko LL, Smirnov VV, Evdokimova AG (1985) State of microcirculation and cellular hemostasis in men with borderline arterial hypertension during thermoneutral “dry” water immersion. Kosm Biol Aviakosm Med 19:35–38 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Kirichenko LL, Masenko VP, Raskurazhev AB, Evdokimova AG (1988) Parameters of hemostasis in persons with neurocirculatory dystonia under conditions of “dry” immersion. Kosm Biol Aviakosm Med 22:10–13 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Kirsch KA, Röcker L, Gauer OH, Krause R, Leach C, Wicke HJ, Landry R (1984) Venous pressure in man during weightlessness. Science 225:218–219

    Article  PubMed  CAS  Google Scholar 

  • Koenig SC, Convertino VA, Fanton JW, Reister CA, Gaffney FA, Ludwig DA, Krotov VP, Trambovetsky EV, Latham RD (1998) Evidence for increased cardiac compliance during exposure to simulated microgravity. Am J Physiol 275:1343–1352

    Google Scholar 

  • Kokova NI (1984) Effect of water-salt dietary supplements on tolerance to head-pelvis acceleration after 7 days of “dry” immersion and during normal motor activity. Kosm Biol Aviakosm Med 18:33–37 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Kopp O (2008) Effects of dry water immersion on bone metabolism (Auswirkungen der trockenen Wasserimmersion auf den Knochenstoffwechsel). PhD dissertation, University of Bonn, Germany (in German)

  • Kornilova LN (1997) Vestibular function and sensory interaction in altered gravity. Adv Space Biol Med 6:275–313

    Article  PubMed  CAS  Google Scholar 

  • Kornilova LN, Alekhina MI, Temnikova VV, Azarov KA (2004) Pursuit function of the eye during 7-day dry immersion without and with a support stimulator. Aviakosm Ekolog Med 38:41–48 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Kornilova LN, Naumov IA, Mazurenko AIu, Kozlovskaia IB (2008) Visual-manual tracking and vestibular function during 7-day dry immersion. Aviakosm Ekolog Med 42:8–13 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Koryak Y (2002a) Surface action potential and contractile properties of the human triceps surae muscle: effect of ‘dry’ water immersion. Exp Physiol 87:101–111

    Article  PubMed  Google Scholar 

  • Koryak Y (2002b) “DRY” immersion induces neural and contractile adaptations in the human triceps surae muscle. Environ Med 46:17–27

    PubMed  Google Scholar 

  • Koryak Y (2006) Functional properties of neuro-muscular apparatus of human in conditions of increased and decreased loading. DSc dissertation, M. available via http://www.imbp.ru/webpages/win1251/Science/DisserSov/Abstracts/Korjak.html Accessed 6 November 2010 (in Russian)

  • Koryak YA, Kozlovskaya IB, Khimoroda NN (2008) Low-frequency neuromuscular electrical stimulation training of human skeletal muscles in conditions of gravitational unloading. J Nat Hist 1:86–90

    Google Scholar 

  • Kotov SA, Oganov VS, Skripnikova IA (2003) Imitation of the early effects of weightlessness in human bone tissue in conditions of head down bed rest and dry immersion. In: Conference of young scientists, Institute of Biomedical Problems, Moscow, 9 April 2003. Available via http://youth.imbp.ru/tesises/2003/kotov.html. Accessed 6 November 2010 (in Russian)

  • Kovalenko EA, Gurovsky NN (1980) Hypokinesia. Medicine, Moscow

    Google Scholar 

  • Kozinets GI, Belakovskii MS, Ushakov AS, Bykova IA, Matveenko VP (1983) Structural and functional changes in human erythrocytes and leukocytes during a 7-day immersion hypokinesia. Kosm Biol Aviakosm Med 17:48–51 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Kozlovskaia IB (2008) Fundamental and applied objectives of investigations in immersion. Aviakosm Ekolog Med 42:3–7 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Kozlovskaia IB, Grigor’eva LS, Gevlich GI (1984) Comparative analysis of the effect of weightlessness and its model on the velocity-strength properties and tonus of human skeletal muscles. Kosm Biol Aviakosm Med 18:22–26 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Kozlovskaya IB (2002) Dry immersion as a powerful tool in studies of sensory-motor effects of microgravity. In: 5th international head-out water immersion symposium: research simulations to model microgravity. Houston, Texas, 8–9 October 2002. Available via http://www.dsls.usra.edu/meetings/howi/pdf/1042.pdf. Accessed 6 November 2010

  • Kozlovskaya IB (2007) Gravitational mechanisms in the motor system. In: Natochin YV, Tkatchuk VA (eds) Contemporary course of classical physiology. GEOTAR-Media, Moscow, pp 115–134

    Google Scholar 

  • Kozlovskaya IB, Kirenskaya AV (1987) Gravitational mechanisms in motor system. Studies in real and simulated weightlessness. In: Massion J (ed) New concepts of motor control. Plenum Press, pp 345–350

  • Kozlovskaya IB, Kreydich YV, Oganov VS, Kozerenko OP (1981) Pathophysiology of motor functions in prolonged manned space flights. Acta Astronaut 8:1059–1072

    Article  PubMed  CAS  Google Scholar 

  • Kozlovskaya I, Dmitrieva I, Grigorieva L, Kirenskaya A, Kredich Yu (1988) Gravitational mechanisms in the motor system. Studies in real and simulated microgravity. In: Gurfinkel V, Ioffe M, Massion J (eds) Stance and motion. Plenum, N9, pp 37–48

  • Kozlovskaya IB, Sayenko IV, Miller TF, Khusnutdinova DR, Melnik KA, Popov DV, Vinogradova OL, Yarmanova EN, Tomilovskaya ES (2007a) Erratum to: New approaches to counter measures of the negative effects of micro-gravity in long-term space flights. Acta Astronaut 60:783–789 (Acta Astronautica 59 (2006) 13–19)

    Article  Google Scholar 

  • Kozlovskaya IB, Sayenko IV, Sayenko DG, Miller TF, Khusnutdinova DR, Melnik KA (2007b) Role of support afferentation in control of the tonic muscle activity. Acta Astronaut 60:285–294

    Article  Google Scholar 

  • Krasney JA (1996) Head-out water immersion: animal studies. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, section 4, environmental physiology. Oxford University Press, II, pp 855–887

  • Kreidich IuV, Repin AA, Barmin VA, Kozlovskaia IB (1982) Effect of immersion hypokinesia on the characteristics of eye and head movement during the human gaze fixation reaction. Kosm Biol Aviakosm Med 16:41–45 (in Russian, English summary)

    Google Scholar 

  • Kriukov AI, Il’in VK, Volozhin AI, Istranov LP, Kiriukhina NV, Starkova LV, Morozova IuA, Usanova NA (2007) Experimental grounds for administration of probiotic drugs in conditions of hydroweightlessness. Vestn Otorinolaringol 4:30–33 (in Russian, English summary)

    PubMed  Google Scholar 

  • Lakota NG, Larina IM (2002) Study of temperature homeostasis in real and simulated weightlessness. Fiziol Cheloveka 28:82–92

    PubMed  CAS  Google Scholar 

  • Larina IM, Lakota NG (2000) The role of individual reactions of thermal and water-electrolyte metabolism to suited immersion. Aviakosm Ekolog Med 34:16–22 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Larina IM, Sukhanov IuV, Lakota NG (1999) Mechanisms of early changes in water-electrolyte metabolism in man in various ground-based models of the effects of microgravity. Aviakosm Ekolog Med 33:17–23

    PubMed  CAS  Google Scholar 

  • Larina IM, Custaud MA, Pastushkova LKh, Vasilieva GYu, Dobrokhotov IV, Istomina VE (2008) Water-electrolyte metabolism, renal function and cutaneous microcirculation in human subjects during 7-day dry immersion. Aviakosm Ekolog Med 42:29–34 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Layne CS, Forth KE (2008) Plantar stimulation as a possible countermeasure to microgravity-induced neuromotor degradation. Aviat Space Environ Med 79:787–794

    Article  PubMed  Google Scholar 

  • Leach Huntoon CS, Grigoriev AI, Natochin YuV (1998) Fluid and electrolyte regulation in spaceflight. In: Leach Huntoon CS, Grigoriev AI, Natochin YuV (eds) Science and technology series, a supplement to advances in the astronautical sciences, vol 94

  • Levine BD, Pawelczyk JA, Ertl AC, Cox JF, Zuckerman JH, Diedrich A, Biaggioni I, Ray CA, Smith ML, Iwase S, Saito M, Sugiyama Y, Mano T, Zhang R, Iwasaki K, Lane LD, Buckey JC Jr, Cooke WH, Baisch FJ, Eckberg DL, Blomqvist CG (2002) Muscle sympathetic neural and haemodynamic responses to tilt following spaceflight. J Physiol 538:331–334

    Article  PubMed  CAS  Google Scholar 

  • Litvinova KS, Vikhlyantsev IM, Kozlovskaya IB, Podlubnaya ZA, Shenkman BS (2004) Effects of artificial support stimulation on fiber and molecular characteristics of soleus muscle in men exposed to 7-day dry immersion. J Gravit Physiol 11:131–132

    Google Scholar 

  • Mano T (2005) Autonomic neural functions in space. Curr Pharm Biotechnol 6:319–324

    Article  PubMed  CAS  Google Scholar 

  • Markin AA, Morukov BV, Zhuravleva OA, Zabolotskaia IV, Vostrikova LV, Liapunova NA, Tsvetkova TG (2008) Dynamics of blood biochemical parameters in an experiment with 7-day immersion. Aviakosm Ekolog Med 42:56–59 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Mel’nik KA, Artamonov AA, Miller TF, Voronov AV (2006) Effects of mechanic stimulation of the foot support zones on locomotion kinematics during 7-day dry immersion. Aviakosm Ekolog Med 40:61–65 (in Russian, English summary)

    PubMed  Google Scholar 

  • Mikhailov VM, Reushkin VN, Reushkina GD, Sebekina TV, Smirnova TM (1995) Use of dispersion analysis in the evaluation of the effects of immersion and individual differences on the variability of orthostatic reactions. Aviakosm Ekolog Med 29:26–32 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Mikhailov VM, Kobzev EA, Charles JB, Yelle JM, Siconolfi SF, Fortney SM (2001) Studies of cardiovascular system in frames of programme “Mir-Shuttle”. In: SSC RF IMBP RAS (ed) Orbital station MIR. Moscow, vol 2, pp 25–68 (in Russian)

  • Miki K, Klocke MR, Hong SK, Krasney JA (1989) Interstitial and intravascular pressures in conscious dogs during head-out water immersion. Am J Physiol 257:358–364

    Google Scholar 

  • Miller TF, Saenko IV, Popov DV, Vinogradova OL, Kozlovskaya IB (2004) Effect of mechanical stimulation of the support zones of soles on the muscle stiffness in 7-day dry immersion. J Gravit Physiol 11:135–136

    Google Scholar 

  • Miller T, Ivanov O, Galanov D, Guekht A, Sayenko I (2005) Mechanic stimulation of the foot support zones as a way to maintain activity of the tonic muscular system during functional support deprivation. J Gravit Physiol 12:149–150

    Google Scholar 

  • Millet C, Custaud MA, Maillet A, Allevard AM, Duvareille M, Gauquelin-Koch G, Gharib C, Fortrat JO (2001) Endocrine responses to 7 days of head-down bed rest and orthostatic tests in men and women. Clin Physiol 21:172–183

    Article  PubMed  CAS  Google Scholar 

  • Miwa C, Sugiyama Y, Iwase S, Mano T, Ohira Y, Grigoriev A, Kozlovskaya I, Egorov A, Shenkman B (1997) Effects of three days of dry immersion on heart rate and blood pressure variabilities during head-up tilting in humans. Environ Med 41:135–137

    PubMed  CAS  Google Scholar 

  • Modak S, Banerjee PK (2004) Studies of left ventricular functions by systolic time intervals on exposure to dry immersion. Indian J Aerospace Med 48:48–56. Available via http://medind.nic.in/iab/t04/i2/iabt04i2p48.pdf. Accessed 6 November 2010

    Google Scholar 

  • Moreva TI (2008) Investigation of peripheral hemodynamics with the use of ultrasonic dopplerography under the conditions of 7-day immersion. Aviakosm Ekolog Med 42:35–40 (in Russian, English summary)

    Google Scholar 

  • Moukhina A, Shenkman B, Blottner D, Nemirovskaya T, Lemesheva Y, Püttmann B, Kozlovskaya I (2004) Effects of support stimulation on human soleus fiber characteristics during exposure to “dry” immersion. J Gravit Physiol 11:137–138

    Google Scholar 

  • Navasiolava N, Custaud MA (2009) What are the future top priority questions in cardiovascular research and what new hardware needs to be developed? Respir Physiol Neurobiol 169:S73–S74

    Article  PubMed  Google Scholar 

  • Navasiolava NM, Dignat-George F, Sabatier F, Larina IM, Demiot C, Fortrat JO, Gauquelin-Koch G, Kozlovskaya IB, Custaud MA (2010a) Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers. Am J Physiol Heart Circ Physiol 299:248–256

    Article  CAS  Google Scholar 

  • Navasiolava NM, de Germain V, Levrard T, Larina IM, Kozlovskaya IB, Diquet B, Le Bouil A, Custaud MA, Fortrat JO (2010b) Skin vascular resistance in the standing position increases significantly after 7 days of dry immersion. Auton Neurosci. doi: 10.1016/j.autneu.2010.10.003

  • Nemirovskaya TL, Shenkman BS (2002) Effects of support stimulation on unloaded soleus in rat. Eur J Appl Physiol 87:120–126

    Article  PubMed  CAS  Google Scholar 

  • Nesterovskaia AIu, Morukov BV, Vorontsov AL, Markin AA, Zhuravleva OA, Zabolotskaia IV, Vostrikova LV (2008) Evaluation of the 7-day immersion effect on the renal excretory function. Aviakosm Ekolog Med 42:52–56 (in Russian, English summary)

    PubMed  Google Scholar 

  • Netreba AI, Khusnutdinova DR, Vinogradova OL, Kozlovskaya IB (2004) Effect of dry immersion in combination with stimulation of foot support zones upon muscle force–velocity characteristics. J Gravit Physiol 11:129–130

    Google Scholar 

  • Netreba AI, Khusnutdinova DR, Vinogradova OL, Kozlovskaya IB (2005) Effect of 7-days dry immersion in combination with mechanical stimulation of foot support zones upon resistance to fatigue of knee extensors and flexors. J Gravit Physiol 12:137–138

    Google Scholar 

  • Netreba AI, Khusnutdinova DR, Vinogradova OL, Kozlovskaya IB (2006) Effect of dry immersion of various durations in combination with artificial stimulation of foot support zones upon force–velocity characteristics of knee extensors. J Gravit Physiol 13:71–72

    Google Scholar 

  • Nicogossian AE, Huntoon CL, Pool SL (1993) Space physiology and medicine, 3rd edn. Lea and Febiger, Philadelphia

  • Ogneva IV, Ponomareva EV, Altaeva EG, Fokina NM, Kozlovskaya IB, Shenkman BS (2009) Decrease of contractile properties and transversal stiffness of single fibers in human soleus after 7-day dry immersion. In: Abstract book of 17th IAA human in space symposium, Moscow, Russia, 7–11 June 2009, pp 97

  • Pakharukova NA, Pastushkova LH, Larina IM (2009a) Changes of healthy human serum proteome profile during 7-day “dry” immersion. In: Summary book of 30th annual international gravitational physiology meeting, Xi’an, China, 24–29 May 2009, pp 56

  • Pakharukova NA, Pastushkova LKh, Larina IM, Grigoriev AI (2009b) Changes of human serum proteome profile during 7-day “dry” immersion. Acta Astronaut. doi:10.1016/j.actaastro.2009.10.014

  • Panferova NE (1976) Cardiovascular system during hypokinesia of varying duration and intensity. Kosm Biol Aviakosm Med 10:15–20 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Park KS, Choi JK, Park YS (1999) Cardiovascular regulation during water immersion. Appl Human Sci 18:233–241

    Article  PubMed  CAS  Google Scholar 

  • Pastushkova LKh, Pakharukova NA, Trifonova OP, Glushkov KV, Larina IM (2010) Low molecular weight proteome of healthy persons during 7-day “dry” immersion and in normal conditions. In: International conference “Neurovascular impairment induced by environmental conditions: molecular, cellular and functional approach”, Angers, 10–14 March 2010. Available via http://congres.physio-angers.fr/Low%20molecular%20weight%20proteome%20of%20healthy%20persons%20during%207day%20dry%20immersion%20and%20in%20normal%20conditions.pdf. Accessed 6 November 2010

  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194

    Article  PubMed  CAS  Google Scholar 

  • Popov DV, Saenko IV, Vinogradova OL, Kozlovskaya IB (2003) Mechanical stimulation of foot support zones for preventing unfavourable effects of gravitational unloading. J Gravit Physiol 10:59–60

    Google Scholar 

  • Prisk GK (2000) Microgravity and the lung. J Appl Physiol 89:385–396

    PubMed  CAS  Google Scholar 

  • Radzijewska MP, Radzijewski PO (2007) Dry immersion—effective physiotherapeutic procedure in system of rehabilitation of weight-lifter sportsmen. Pedagogics, psychology, medical-biological problems of physical training and sports (Ukraine) 10:116–121. Available via http://www.nbuv.gov.ua/portal/Soc_Gum/PPMB/texts/2007-10/07rmpswl.pdf. Accessed 6 November 2010 (in Russian, English summary)

  • Rykova MP, Antropova EN, Larina IM, Morukov BV (2008) Humoral and cellular immunity in cosmonauts after the ISS missions. Acta Astronaut 63:697–705

    Article  Google Scholar 

  • Saling M, Lechner-Steinleitner S, Gerstenbrand F, Struhal W, Berger M (2002) Sensorimotor test in 48 hours dry water immersion (arm matching test). In: 5th international head-out water immersion symposium: research simulations to model microgravity. 8–9 October 2002. Available via http://www.dsls.usra.edu/meetings/howi/pdf/1050.pdf. Accessed 6 November 2010

  • Sayenko IV (2007) The characteristics of activity spinal mechanisms in microgravity conditions. PhD dissertation, Institute of Biomedical Problems, Moscow, Russia. Available via http://www.imbp.ru/webpages/win1251/Science/DisserSov/Abstracts/Saenko.html Accessed 6 November 2010. (in Russian)

  • Sayenko DG, Artamonov AA, Ivanov OG, Kozlovskaya IB (2005) Effect of 6 days of support withdrawal on characteristics of balance function. J Gravit Physiol 12:33–34

    Google Scholar 

  • Shenkman BS, Kozlovskaya IB, Nemirovskaya TL, Tcheglova IA (1997) Human muscle atrophy in supportlessness: effects of short-term exposure to dry immersion. J Gravit Physiol 4:137–138

    Google Scholar 

  • Shenkman BS, Podlubnaia ZA, Vikhliantsev IM, Litvinova KS, Udal’tsov SN, Nemirovskaia TL, Lemesheva IuS, Mukhina AM, Kozlovskaia IB (2004a) Human soleus fibers contractile characteristics and sarcomeric cytoskeletal proteins after gravitational unloading. Contribution of support stimulus. Biofizika 49:881–890 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Shenkman BS, Litvinova KS, Nemirovskaya TL, Podlubnaya ZA, Vikhlyantsev IM, Kozlovskaya IB (2004b) Afferent and peripheral control of muscle fiber properties during gravitational unloading. J Gravit Physiol 11:111–114

    Google Scholar 

  • Shoemaker JK, Hogeman CS, Leuenberger UA, Herr MD, Gray K, Silber DH, Sinoway LI (1998) Sympathetic discharge and vascular resistance after bed rest. J Appl Physiol 84:612–617

    PubMed  CAS  Google Scholar 

  • Shul’zhenko EB, Gogolev KI, Beliaev SM (1983a) Physical exertion tolerance after water immersion. Kosm Biol Aviakosm Med 17:40–45 (in Russian, English summary)

    PubMed  Google Scholar 

  • Shul’zhenko EB, Kozlova VG, Kurdin KA, Iarov AS, Plokhova VG (1983b) The antigravity suit, chamberless type, as a means of increasing orthostatic tolerance after water immersion hypokinesis and acceleration. Kosm Biol Aviakosm Med 17:30–33 (in Russian, English summary)

    PubMed  Google Scholar 

  • Shul’zhenko EB, Kozlova VG, Aleksandrova EA, Kudrin KA (1984) Adaptive effects of repeated immersion exposure on the human body. Kosm Biol Aviakosm Med 18:57–59 (in Russian, English summary)

    PubMed  Google Scholar 

  • Shulzhenko EB (1975) Physiological effects of altered gravitation (ground simulation experiments). DSc dissertation, Moscow, Russia (in Russian)

  • Shulzhenko EB, Vil-Vilyams IF (1975) Simulation of the human body deconditioning with the method of “dry” immersion. Xth K.E. Tziolkovski readings, pp 39–47 (in Russian, English summary)

  • Shulzhenko EB, Vil-Vilyams IF (1976) The possibility to maintain a long term water immersion by using the method of “dry immersion”. Kosm Biol Aviakosm Med 10:82–84 (in Russian, English summary)

    CAS  Google Scholar 

  • Shulzhenko EB, Vil-Vilyams IF, Grigoryev AI, Gogolev KI, Khudyakova MA (1977) Prevention of human deconditioning during prolonged immersion in water. Life Sci Space Res 15:219–224

    PubMed  CAS  Google Scholar 

  • Shulzhenko EB, Tigranyan RA, Panfilov VE, Bzhalava II (1980) Physiological reactions during acute adaptation to reduced gravity. Life Sci Space Res 18:175–179

    PubMed  CAS  Google Scholar 

  • Sigaudo D, Fortrat JO, Allevard AM, Maillet A, Cottet-Emard JM, Vouillarmet A, Hughson RL, Gauquelin-Koch G, Gharib C (1998) Changes in the sympathetic nervous system induced by 42 days of head-down bed rest. Am J Physiol 274:H1875–H1884

    PubMed  CAS  Google Scholar 

  • Sigaudo-Roussel D, Custaud MA, Maillet A, Güell A, Kaspranski R, Hughson RL, Gharib C, Fortrat JO (2002) Heart rate variability after prolonged spaceflights. Eur J Appl Physiol 86:258–265

    Article  PubMed  Google Scholar 

  • Somody L, El Fazaa S, Gharbi N, Gharib C, Gauquelin-Koch G (1999) Immersion physiology: a current look at an ancient treatment. Presse Thermale et Climatique 136:181–187

    Google Scholar 

  • Sonkin V, Zaitseva V, Bourtchik M (1996) Physiological cost of standard physical load after 7-day dry immersion. J Gravit Physiol 3:20–21

    PubMed  CAS  Google Scholar 

  • Sonkin VD, Kozlovskaya IB, Zaitseva VV, Bourchick MV, Stepantsov VI (1998) Certain approaches to the development of on-board automated training system. Acta Astronaut 43:291–311

    Article  PubMed  CAS  Google Scholar 

  • Stoida Y, Vinogradova OL (1996) Acute effects of dry immersion upon blood supply of calf muscles during upright exercise. J Gravit Physiol 3:18–19

    PubMed  CAS  Google Scholar 

  • Stoida IuM, Vinogradova OL, Golovachev AI (1998) Effect of 3-day immersion on calf blood flow during physical loading test. Aviakosm Ekolog Med 32:24–27 (in Russian, English summary)

    PubMed  Google Scholar 

  • Struhal W, Berger M, Gerstenbrand F, Golaszewski S, Lechner-Steinleitner S (2002) Changes of reflex amplitude in dry water immersion. In: 5th international head-out water immersion symposium: research simulations to model microgravity. 8–9 October 2002. Available via http://www.dsls.usra.edu/meetings/howi/pdf/1051.pdf. Accessed 6 November 2010

  • Sukhanov YuV (1985) The state of antidiuretic system in human during space flights and modeled studies of different duration. PhD dissertation, Moscow, Russia (in Russian)

  • Sula AS, Ryabykina GV, Grishin VG (2007) Dispersion mapping is a new method for ECG analysis. Biophysical bases of an electrodynamic cardiac biogenerator model. Kardiologicheskii Vestnik, Bulleten’ Rossiiskogo Kardiologicheskogo Nauchno-Proizvodstvennogo Kompleksa, vol 2, no 1. Available via http://old.consilium-medicum.com/media/cardio/07_01/49.shtml Accessed 6 November 2010 (in Russian, English summary)

  • Tikhonov MA, Kondakov AV, Asiamolova NM, Volkov MIu (1983) Effect of water immersion as a model of weightlessness on lung closing volume. Kosm Biol Aviakosm Med 17:37–40 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Tomilovskaya ES (2007) Mechanisms of adaptation of agreed movements of eyes and head in microgravity. PhD dissertation, Institute of Biomedical Problems, Moscow, Russia. Available via http://www.imbp.ru/webpages/win1251/Science/DisserSov/Abstracts/Tomilovskaya.html Accessed 6 November 2010 (in Russian)

  • Tomilovskaya ES, Kirenskaya AV, Novototski-Vlasov VY, Kozlovskaya IB (2004) Event-related EEG changes preceding saccadic eye movements before and after dry immersion. J Gravit Physiol 11:P33–P34

    PubMed  CAS  Google Scholar 

  • Tomilovskaya ES, Kirenskaya AV, Lazarev IE, Novototskiĭ-Vlasov VIu, Kozlovskaia IB (2008) Effect of support removal on pre-saccadic EEG potentials in test-subjects with various asymmetry profiles. Aviakosm Ekolog Med 42:14–18 (in Russian, English summary)

    Google Scholar 

  • Traon AP, Vasseur P, Arbeille P, Güell A, Bes A, Gharib C (1995) Effects of 28-day head-down tilt with and without countermeasures on lower body negative pressure responses. Aviat Space Environ Med 66:982–991

    PubMed  CAS  Google Scholar 

  • Vil’-Vil’iams IF, Shul’zhenko EB (1980) Functional state of the cardiovascular system during combined exposure to 28-day immersion, rotation in a short radius centrifuge, and physical loading on a bicycle ergometer. Kosm Biol Aviakosm Med 14:42–45 (in Russian, English summary)

    PubMed  Google Scholar 

  • Vil’-Viliams IF, Shul’zhenko EB (1978) Cardiac arrhythmias in exposure to +Gz loads after immersion. Kosm Biol Aviakosm Med 12:50–56 (in Russian, English summary)

    PubMed  Google Scholar 

  • Vil-Viliams IF (1994) Principle approaches to selection of the short-arm centrifuge regimens for extended space flight. Acta Astronaut 33:221–229

    Article  PubMed  CAS  Google Scholar 

  • Vil-Viliams IF, Kotovskaya AR, Lukjanuk VJu, Gavrilova LN, Chjuk MI, Nikolashin GF, Yarov AS, Krjutchenko SG, Klejev VV (1996) Study of the effectiveness of the “Centaur” anti-G suit during exposure to +Gz accelerations after immersion. J Gravit Physiol 3:24–25

    PubMed  CAS  Google Scholar 

  • Vil-Viliams IF, Kotovskaya AR, Nikolashin GF, Lukjanuk VJ (2001) Modern view on the short-arm centrifuge as a potential generator of artificial gravity in piloted missions. J Gravit Physiol 8:145–146

    Google Scholar 

  • Vinogradova OL, Popov DV, Saenko IV, Kozlovskaya IB (2002a) Muscle transverse stiffness and venous compliance under conditions of simulated supportlessness. J Gravit Physiol 9:327–329

    Google Scholar 

  • Vinogradova OL, Stoida IuM, Mano T, Iwase S (2002b) Effects of gravitational unloading on blood supply of working muscles. Aviakosm Ekolog Med 36:39–46 (in Russian, English summary)

    PubMed  CAS  Google Scholar 

  • Watenpaugh DE, Hargens AR (1996) The cardiovascular system in microgravity. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, chapter 29. Oxford University Press, New York, pp 631–674

  • White RJ, Blomqvist CG (1998) Central venous pressure and cardiac function during spaceflight. J Appl Physiol 85:738–746

    PubMed  CAS  Google Scholar 

  • Williams D, Kuipers A, Mukai C, Thirsk R (2009) Acclimation during space flight: effects on human physiology. CMAJ 180:1317–1323

    PubMed  Google Scholar 

  • Yatsyk GV (2002) Algorithms of diagnosis, treatment and rehabilitation of perinatal pathology of underweighted infants. Pedagogika-Press, Moscow (in Russian)

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere gratitude to all the investigators whose work is cited in this paper, and to all the volunteers who participated in the dry immersion protocols. We are grateful to Jackie Godfrey and David Cushley for reviewing the syntax. The work was partly supported by the Centre National d’Etudes Spatiales (CNES), the Centre National de la Recherche Scientifique (CNRS), the Région des Pays de la Loire and the Institute of Biomedical Problems. N. Navasiolava received a PhD grant from the French Embassy in Belarus.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nastassia M. Navasiolava.

Additional information

Communicated by Nigel Taylor.

Appendix: Variations of English transcription of the names of Russian authors cited in this paper

Appendix: Variations of English transcription of the names of Russian authors cited in this paper

Baevsky, Baevskiĭ RM

Chernicova, Chernikova AG

Grigor’ev, Grigoriev, Grigoryev AI

Grigor’eva, Grigorieva LS

Il’in, Ilyin VK

Kirenskaia, Kirenskaya AV

Koriak, Koryak, Korijak Iu(Yu, Y)A

Kozlovskaya, Kozlovskaia, Kozlovskaja IB

Kreidich IuV, Kreydich YV

Mel’nik, Melnik KA

Shul’zhenko, Shulzhenko EB

Tomilovskaia, Tomilovskaya ES

Vil-Vilyams, Vil-Viliams, Vil’-Viliams, Vil’-Vil’iams, Will-Williams IF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navasiolava, N.M., Custaud, MA., Tomilovskaya, E.S. et al. Long-term dry immersion: review and prospects. Eur J Appl Physiol 111, 1235–1260 (2011). https://doi.org/10.1007/s00421-010-1750-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1750-x

Keywords

Navigation