Skip to main content

Advertisement

Log in

Effects of plyometric exercise session on markers of bone turnover in boys and young men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

The acute exercise effects on bone markers in adults are unclear, while in children, there are no such data.

Purpose

To investigate the acute response of biochemical markers of bone turnover to a high-impact exercise session consisting of high-mechanical loading in boys and young men.

Methods

Twelve boys (10.2 ± 0.4 years) and 14 men (22.0 ± 0.8 years) underwent a protocol of plyometric jumping exercises (total 144 jumps). Venous blood samples were collected pre-, 5 min, 1 and 24 h post-exercise, and analyzed for markers of bone formation and resorption: bone-specific alkaline phosphatase (bone ALP), osteoprotegerin (OPG), amino-terminal cross-linking telopeptide (NTx), and receptor activator of nuclear factor kappa beta ligand (RANKL).

Results

Boys had higher resting bone ALP (111.9 ± 29.2 vs. 30.6 ± 11.2 µg/L, p < 0.05) and NTx levels (49.8 ± 13.2 vs. 21.7 ± 5.9 nM BCE, p < 0.05) than men but no group differences were observed in resting OPG or RANKL. Following exercise (24 h), bone ALP and NTx increased in both boys and men (bone ALP: 24.1 vs. 9.9 %, respectively; NTx: 23.5 vs. −5 %, respectively), although the group-by-time interaction was not statistically significant. OPG increased significantly (p < 0.05) in both groups (5.7 and 16.1 %, respectively).

Conclusion

Even one session of plyometric exercises appear to stimulate bone formation in boys and men, as reflected by the increase in bone ALP and OPG. The boys’ response appears more pronounced than the men’s, suggesting that during growth, cellular bone activities respond with greater magnitude to mechanical stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BMI:

Body mass index

Bone ALP:

Bone-specific alkaline phosphatase

CTx:

C-terminal telopeptide of type I collagen

CV:

Coefficient of variation

GnRH:

Gonadotropin releasing hormone

ICTP:

Carboxy-terminal telopeptide of type I collagen

MDE:

Minimal detected effect

NTx:

Amino-terminal cross-linking telopeptide

PHV:

Peak height velocity

PINP:

Procollagen type I c-terminal peptide

PYPAQ:

Past year physical activity questionnaire

OPG:

Osteoprotegerin

RANKL:

Receptor activator of nuclear factor kappa beta ligand

RM:

Repeated measures

TRAP5b:

Tartrate-resistant acid phosphatase 5b

W:

Watts

References

  • Aaron DJ, Kriska AM, Dearwater SR, Cauley JA, Metz KF, LaPorte RE (1995) Reproducibility and validity of an epidemiologic questionnaire to assess past year physical activity in adolescents. Am J Epidemiol 142:191–201

    CAS  PubMed  Google Scholar 

  • Anonymous (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 17:1–45

  • Ashizawa N, Ouchi G, Fujimura R, Yoshida Y, Tokuyama K, Suzuki M (1998) Effects of a single bout of resistance exercise on calcium and bone metabolism in untrained young males. Calcif Tissue Int 62:104–108

    Article  CAS  PubMed  Google Scholar 

  • Banfi G, Lombardi G, Colombini A, Lippi G (2010) Bone metabolism markers in sports medicine. Sports Med 40:697–714

    Article  PubMed  Google Scholar 

  • Brahm H, Piehl-Aulin K, Ljunghall S (1996) Biochemical markers of bone metabolism during distance running in healthy, regularly exercising men and women. Scand J Med Sci Sports 6:26–30

    Article  CAS  PubMed  Google Scholar 

  • Brahm H, Piehl-Aulin K, Ljunghall S (1997) Bone metabolism during exercise and recovery: the influence of plasma volume and physical fitness. Calcif Tissue Int 61:192–198

    Article  CAS  PubMed  Google Scholar 

  • Broyles DL, Nielsen RG, Bussett EM, Lu WD, Mizrahi IA, Nunnelly PA, Ngo TA, Noell J, Christenson RH, Kress BC (1998) Analytical and clinical performance characteristics of Tandem-MP Ostase, a new immunoassay for serum bone alkaline phosphatase. Clin Chem 44:2139–2147

    CAS  PubMed  Google Scholar 

  • Cassell C, Benedict M, Specker B (1996) Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med Sci Sports Exerc 28:1243–1246

    Article  CAS  PubMed  Google Scholar 

  • Clemens JD, Herrick MV, Singer FR, Eyre DR (1997) Evidence that serum NTx (collagen-type I N-telopeptides) can act as an immunochemical marker of bone resorption. Clin Chem 43:2058–2063

    CAS  PubMed  Google Scholar 

  • Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R (2002) Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 30:886–890

    Article  CAS  PubMed  Google Scholar 

  • Collin-Osdoby P, Rothe L, Anderson F, Nelson M, Maloney W, Osdoby P (2001) Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J Biol Chem 276:20659–20672

    Article  CAS  PubMed  Google Scholar 

  • Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL (1998) Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 8:152–158

    Article  CAS  PubMed  Google Scholar 

  • Eliakim A, Brasel JA, Mohan S, Barstow TJ, Berman N, Cooper DM (1996) Physical fitness, endurance training, and the growth hormone-insulin-like growth factor I system in adolescent females. J Clin Endocrinol Metab 81:3986–3992

    CAS  PubMed  Google Scholar 

  • Eliakim A, Raisz LG, Brasel JA, Cooper DM (1997) Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J Bone Miner Res 12:1708–1713

    Article  CAS  PubMed  Google Scholar 

  • Erickson CR, Vukovich MD (2010) Osteogenic index and changes in bone markers during a jump training program: a pilot study. Med Sci Sports Exerc 42:1485–1492

    Article  PubMed  Google Scholar 

  • Falk B, Eliakim A (2014) Endocrine response to resistance training in children. Pediatr Exerc Sci 26:404–422

    Article  PubMed  Google Scholar 

  • Fan X, Roy E, Zhu L, Murphy TC, Ackert-Bicknell C, Hart CM, Rosen C, Nanes MS, Rubin J (2004) Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 145:751–759

    Article  CAS  PubMed  Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  • Freedson PS, Melanson E, Sirard J (1998) Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 30:777–781

    Article  CAS  PubMed  Google Scholar 

  • Freedson P, Pober D, Janz KF (2005) Calibration of accelerometer output for children. Med Sci Sports Exerc 37:S523–S530

    Article  PubMed  Google Scholar 

  • Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16:148–156

    Article  CAS  PubMed  Google Scholar 

  • Godin G, Shephard RJ (1985) A simple method to assess exercise behavior in the community. Can J Appl Sport Sci 10:141–146

    CAS  PubMed  Google Scholar 

  • Gomez B Jr, Ardakani S, Ju J, Jenkins D, Cerelli MJ, Daniloff GY, Kung VT (1995) Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clin Chem 41:1560–1566

    CAS  PubMed  Google Scholar 

  • Guillemant J, Accarie C, Peres G, Guillemant S (2004) Acute effects of an oral calcium load on markers of bone metabolism during endurance cycling exercise in male athletes. Calcif Tissue Int 74:407–414

    Article  CAS  PubMed  Google Scholar 

  • Gunter KB, Almstedt HC, Janz KF (2012) Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev 40:13–21

    Article  PubMed Central  PubMed  Google Scholar 

  • Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A, Oja P, Vuori I (1998) Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 13:310–319

    Article  CAS  PubMed  Google Scholar 

  • Hannon R, Eastell R (2000) Preanalytical variability of biochemical markers of bone turnover. Osteoporos Int 11(Suppl 6):S30–S44

    Article  PubMed  Google Scholar 

  • Herrmann M, Muller M, Scharhag J, Sand-Hill M, Kindermann W, Herrmann W (2007) The effect of endurance exercise-induced lactacidosis on biochemical markers of bone turnover. Clin Chem Lab Med 45:1381–1389

    CAS  PubMed  Google Scholar 

  • Hofbauer LC, Heufelder AE (2001) Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 79:243–253

    Article  CAS  PubMed  Google Scholar 

  • Jurimae J, Purge P, Jurimae T, von Duvillard SP (2006) Bone metabolism in elite male rowers: adaptation to volume-extended training. Eur J Appl Physiol 97:127–132

    Article  PubMed  Google Scholar 

  • Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055

    Article  CAS  PubMed  Google Scholar 

  • Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  • Langberg H, Skovgaard D, Asp S, Kjaer M (2000) Time pattern of exercise-induced changes in type I collagen turnover after prolonged endurance exercise in humans. Calcif Tissue Int 67:41–44

    Article  CAS  PubMed  Google Scholar 

  • Lin CF, Huang TH, Tu KC, Lin LL, Tu YH, Yang RS (2012) Acute effects of plyometric jumping and intermittent running on serum bone markers in young males. Eur J Appl Physiol 112:1475–1484

    Article  PubMed  Google Scholar 

  • Lippi G, Schena F, Montagnana M, Salvagno GL, Banfi G, Guidi GC (2008) Acute variation of osteocalcin and parathyroid hormone in athletes after running a half-marathon. Clin Chem 54:1093–1095

    Article  CAS  PubMed  Google Scholar 

  • MacKelvie KJ, Khan KM, McKay HA (2002) Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med 36:250–257 discussion 257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malm HT, Ronni-Sivula HM, Viinikka LU, Ylikorkala OR (1993) Marathon running accompanied by transient decreases in urinary calcium and serum osteocalcin levels. Calcif Tissue Int 52:209–211

    Article  CAS  PubMed  Google Scholar 

  • Mantila Roosa SM, Liu Y, Turner CH (2011) Gene expression patterns in bone following mechanical loading. J Bone Miner Res 26:100–112

    Article  PubMed Central  PubMed  Google Scholar 

  • Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP (2002) An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 34:689–694

    Article  PubMed  Google Scholar 

  • NIH Consensus Development Panel on Osteoporosis Prevention D Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  • Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE (1999) Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab 17:171–177

    Article  CAS  PubMed  Google Scholar 

  • Nogueira RC, Weeks BK, Beck BR (2014) Exercise to improve pediatric bone and fat: a systematic review and meta-analysis. Med Sci Sports Exerc 46:610–621

    Article  PubMed  Google Scholar 

  • North American Menopause S (2006) Management of osteoporosis in postmenopausal women: 2006 position statement of The North American Menopause Society. Menopause 13:340–367 quiz 368–349

    Article  Google Scholar 

  • Pearson OM, Lieberman DE (2004) The aging of Wolff’s “law”: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol Suppl 39:63–99

    Article  Google Scholar 

  • Philippou A, Bogdanis G, Maridaki M, Halapas A, Sourla A, Koutsilieris M (2009) Systemic cytokine response following exercise-induced muscle damage in humans. Clin Chem Lab Med 47:777–782

    Article  CAS  PubMed  Google Scholar 

  • Pomerants T, Tillmann V, Karelson K, Jurimae J, Jurimae T (2008) Impact of acute exercise on bone turnover and growth hormone/insulin-like growth factor axis in boys. J Sports Med Phys Fitness 48:266–271

    CAS  PubMed  Google Scholar 

  • Rector RS, Rogers R, Ruebel M, Hinton PS (2008) Participation in road cycling vs running is associated with lower bone mineral density in men. Metabolism 57:226–232

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Eastell R (2005) Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90:6323–6331

    Article  CAS  PubMed  Google Scholar 

  • Rogers RS, Dawson AW, Wang Z, Thyfault JP, Hinton PS (2011) Acute response of plasma markers of bone turnover to a single bout of resistance training or plyometrics. J Appl Physiol (1985) 111:1353–1360

    Article  CAS  Google Scholar 

  • Sallis JF, Buono MJ, Roby JJ, Micale FG, Nelson JA (1993) Seven-day recall and other physical activity self-reports in children and adolescents. Med Sci Sports Exerc 25:99–108

    Article  CAS  PubMed  Google Scholar 

  • Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD (2010) The effect of training status on the metabolic response of bone to an acute bout of exhaustive treadmill running. J Clin Endocrinol Metab 95:3918–3925

    Article  CAS  PubMed  Google Scholar 

  • Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD (2011) The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. J Appl Physiol (1985) 110:423–432

    Article  CAS  Google Scholar 

  • Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD (2012) Effect of fasting versus feeding on the bone metabolic response to running. Bone 51:990–999

    Article  CAS  PubMed  Google Scholar 

  • Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD (2013) Effect of recovery duration between two bouts of running on bone metabolism. Med Sci Sports Exerc 45:429–438

    Article  PubMed  Google Scholar 

  • Sherk VD, Chrisman C, Smith J, Young KC, Singh H, Bemben MG, Bemben DA (2013) Acute bone marker responses to whole-body vibration and resistance exercise in young women. J Clin Densitom 16:104–109

    Article  PubMed Central  PubMed  Google Scholar 

  • Shibata Y, Ohsawa I, Watanabe T, Miura T, Sato Y (2003) Effects of physical training on bone mineral density and bone metabolism. J Physiol Anthropol Appl Human Sci 22:203–208

    Article  PubMed  Google Scholar 

  • Slaughter MH, Lohman TG, Boileau BA (1988) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60:709–723

    CAS  PubMed  Google Scholar 

  • Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–294

    Article  CAS  PubMed  Google Scholar 

  • Tanner JM (1962) Growth at adolescence. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Thorsen K, Kristoffersson A, Hultdin J, Lorentzon R (1997) Effects of moderate endurance exercise on calcium, parathyroid hormone, and markers of bone metabolism in young women. Calcif Tissue Int 60:16–20

    Article  CAS  PubMed  Google Scholar 

  • Troesch B, Hoeft B, McBurney M, Eggersdorfer M, Weber P (2012) Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br J Nutr 108:692–698

    Article  CAS  PubMed  Google Scholar 

  • Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446

    Article  PubMed  Google Scholar 

  • Weitzmann MN (2013) The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica 2013:125705

    Article  PubMed Central  PubMed  Google Scholar 

  • Welsh L, Rutherford OM, James I, Crowley C, Comer M, Wolman R (1997) The acute effects of exercise on bone turnover. Int J Sports Med 18:247–251

    Article  CAS  PubMed  Google Scholar 

  • Whipple TJ, Le BH, Demers LM, Chinchilli VM, Petit MA, Sharkey N, Williams NI (2004) Acute effects of moderate intensity resistance exercise on bone cell activity. Int J Sports Med 25:496–501

    Article  CAS  PubMed  Google Scholar 

  • Woitge HW, Friedmann B, Suttner S, Farahmand I, Muller M, Schmidt-Gayk H, Baertsch P, Ziegler R, Seibel MJ (1998) Changes in bone turnover induced by aerobic and anaerobic exercise in young males. J Bone Miner Res 13:1797–1804

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Fu M, Myles D, Zhu X, Du J, Cao X, Chen YE (2002) PDGF induces osteoprotegerin expression in vascular smooth muscle cells by multiple signal pathways. FEBS Lett 521:180–184

    Article  CAS  PubMed  Google Scholar 

  • Ziegler S, Niessner A, Richter B, Wirth S, Billensteiner E, Woloszczuk W, Slany J, Geyer G (2005) Endurance running acutely raises plasma osteoprotegerin and lowers plasma receptor activator of nuclear factor kappa B ligand. Metabolism 54:935–938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the participants and their parents who volunteered to participate in this study. The study was funded by a Brock University grant.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bareket Falk.

Additional information

Communicated by Olivier Seynnes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kish, K., Mezil, Y., Ward, W.E. et al. Effects of plyometric exercise session on markers of bone turnover in boys and young men. Eur J Appl Physiol 115, 2115–2124 (2015). https://doi.org/10.1007/s00421-015-3191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3191-z

Keywords

Navigation