Skip to main content
Log in

Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT)

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

We have previously shown that 6 weeks of reduced-exertion high-intensity interval training (REHIT) improves \(\dot{V}{\text{O}}_{2}\)max in sedentary men and women and insulin sensitivity in men. Here, we present two studies examining the acute physiological and molecular responses to REHIT.

Methods

In Study 1, five men and six women (age: 26 ± 7 year, BMI: 23 ± 3 kg m−2, \(\dot{V}{\text{O}}_{2}\)max: 51 ± 11 ml kg−1 min−1) performed a single 10-min REHIT cycling session (60 W and two 20-s ‘all-out’ sprints), with vastus lateralis biopsies taken before and 0, 30, and 180 min post-exercise for analysis of glycogen content, phosphorylation of AMPK, p38 MAPK and ACC, and gene expression of PGC1α and GLUT4. In Study 2, eight men (21 ± 2 year; 25 ± 4 kg·m−2; 39 ± 10 ml kg−1 min−1) performed three trials (REHIT, 30-min cycling at 50 % of \(\dot{V}{\text{O}}_{2}\)max, and a resting control condition) in a randomised cross-over design. Expired air, venous blood samples, and subjective measures of appetite and fatigue were collected before and 0, 15, 30, and 90 min post-exercise.

Results

Acutely, REHIT was associated with a decrease in muscle glycogen, increased ACC phosphorylation, and activation of PGC1α. When compared to aerobic exercise, changes in \(\dot{V}{\text{O}}_{2}\), RER, plasma volume, and plasma lactate and ghrelin were significantly more pronounced with REHIT, whereas plasma glucose, NEFAs, PYY, and measures of appetite were unaffected.

Conclusions

Collectively, these data demonstrate that REHIT is associated with a pronounced disturbance of physiological homeostasis and associated activation of signalling pathways, which together may help explain previously observed adaptations once considered exclusive to aerobic exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

AMPK:

AMP-activated protein kinase

ANOVA:

Analysis of variance

ATP:

Adenosine triphosphate

AUC:

Area under the curve

β-HAD:

β-Hydroxyacyl-CoA dehydrogenase

BMI:

Body mass index

COX IV:

Cytochrome c oxidase

EPOC:

Excess post-exercise oxygen consumption

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GLUT4:

Glucose transporter 4

HIT:

High-intensity interval training

HRmax:

Maximal heart rate

p38 MAPK:

p38 mitogen-activated protein kinase

NEFA:

Non-esterified fatty acid

PCR:

Polymerase chain reaction

PGC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PYY:

Peptide YY

REHIT:

Reduced-exertion HIT

RER:

Respiratory exchange ratio

RPE:

Rating of perceived exertion

\(\dot{V}{\text{O}}_{2}\)max:

Maximal oxygen uptake capacity

References

  • Allender S, Scarborough P, Peto V, Rayner M, Leal J, Luengo-Fernandez R, Gray A (2008) European cardiovascular disease statistics. European Heart Network, Brussels

    Google Scholar 

  • Beaulieu K, Olver TD, Abbott KC, Lemon PW (2015) Energy intake over 2 days is unaffected by acute sprint interval exercise despite increased appetite and energy expenditure. Appl Physiol Nutr Metab 40(1):79–86. doi:10.1139/apnm-2014-0229

    Article  CAS  PubMed  Google Scholar 

  • Betts JA, Thompson D (2012) Thinking outside the bag (not necessarily outside the lab). Med Sci Sports Exerc 44(10):2040. doi:10.1249/MSS.0b013e318264526f

    Article  PubMed  Google Scholar 

  • Boutcher SH (2011) High-intensity intermittent exercise and fat loss. J Obes 2011:868305. doi:10.1155/2011/868305

    Article  PubMed Central  PubMed  Google Scholar 

  • Broom DR, Stensel DJ, Bishop NC, Burns SF, Miyashita M (2007) Exercise-induced suppression of acylated ghrelin in humans. J Appl Physiol 102(6):2165–2171. doi:10.1152/japplphysiol.00759.2006

    Article  CAS  PubMed  Google Scholar 

  • Broom DR, Batterham RL, King JA, Stensel DJ (2009) Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males. Am J Physiol Regul Integr Comp Physiol 296(1):R29–R35. doi:10.1152/ajpregu.90706.2008

    Article  CAS  PubMed  Google Scholar 

  • Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol 98(6):1985–1990. doi:10.1152/japplphysiol.01095.2004

    Article  PubMed  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586(1):151–160. doi:10.1113/jphysiol.2007.142109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan HH, Burns SF (2013) Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise. Appl Physiol Nutr Metab 38(2):182–187. doi:10.1139/apnm-2012-0136

    Article  CAS  PubMed  Google Scholar 

  • Chan MH, McGee SL, Watt MJ, Hargreaves M, Febbraio MA (2004) Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with IL-6 gene transcription during contraction. FASEB J 18(14):1785–1787. doi:10.1096/fj.03-1039fje

    CAS  PubMed  Google Scholar 

  • Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, Tarnopolsky MA, Gibala MJ (2014) Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol 99(5):782–791. doi:10.1113/expphysiol.2013.077453

    Article  CAS  PubMed  Google Scholar 

  • Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe AM, Barker TA, Tipton KD, Wagenmakers AJ (2013) Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol 591:641–656. doi:10.1113/jphysiol.2012.239566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS (2011) Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep 22(1):7–14

    PubMed  Google Scholar 

  • Davies SP, Sim AT, Hardie DG (1990) Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem 187(1):183–190. doi:10.1111/j.1432-1033.1990.tb15293.x

    Article  CAS  PubMed  Google Scholar 

  • Deighton K, Barry R, Connon CE, Stensel DJ (2013) Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise. Eur J Appl Physiol 113(5):1147–1156. doi:10.1007/s00421-012-2535-1

    Article  CAS  PubMed  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    CAS  PubMed  Google Scholar 

  • Esbjornsson M, Norman B, Suchdev S, Viru M, Lindhgren A, Jansson E (2009) Greater growth hormone and insulin response in women than in men during repeated bouts of sprint exercise. Acta Physiol 197(2):107–115. doi:10.1111/j.1748-1716.2009.01994.x

    Article  CAS  Google Scholar 

  • Esbjornsson-Liljedahl M, Sundberg CJ, Norman B, Jansson E (1999) Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol 87:1326–1332

    CAS  PubMed  Google Scholar 

  • Flint A, Raben A, Blundell JE, Astrup A (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24(1):38–48. doi:10.1038/sj.ijo.0801083

    Article  CAS  PubMed  Google Scholar 

  • Fuentes T, Guerra B, Ponce-González JG, Morales-Alamo D, Guadalupe-Grau A, Olmedillas H, Rodríguez-García L, Feijoo D, De Pablos-Velasco P, Fernández-Pérez L, Santana A, Calbet JA (2012) Skeletal muscle signalling response to sprint exercise in men and women. Eur J Appl Physiol 112(5):1917–1927. doi:10.1007/s00421-011-2164-0

    Article  CAS  PubMed  Google Scholar 

  • Fuentes T, Ponce-González JG, Morales-Alamo D, de Torres-Peralta R, Santana A, De Pablos-Velasco P, Olmedillas H, Guadalupe-Grau A, Rodríguez-García L, Serrano-Sanchez JA, Guerra B, Calbet JA (2013) Isoinertial and isokinetic sprints: muscle signalling. Int J Sports Med 34(4):285–292. doi:10.1055/s-0032-1312583

    CAS  PubMed  Google Scholar 

  • Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359. doi:10.1249/MSS.0b013e318213fefb

    Article  PubMed  Google Scholar 

  • Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575:901–911. doi:10.1113/jphysiol.2006.112094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M (2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol 106(3):929–934. doi:10.1152/japplphysiol.90880.2008

    Article  CAS  PubMed  Google Scholar 

  • Gillen JB, Gibala MJ (2014) Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab 39(3):409–412. doi:10.1139/apnm-2013-0187

    Article  PubMed  Google Scholar 

  • Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ (2013) Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obes. doi:10.1002/oby.20379

    Google Scholar 

  • Gillen JB, Percival ME, Skelly LE, Martin BJ, Tan RB, Tarnopolsky MA, Gibala MJ (2014) Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS One 9(11):e111489. doi:10.1371/journal.pone.0111489

    Article  PubMed Central  PubMed  Google Scholar 

  • Ha J, Daniel S, Broyles SS, Kim KH (1994) Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem 269(35):22162–22168

    CAS  PubMed  Google Scholar 

  • Haussinger D (1996) The role of cellular hydration in the regulation of cell function. Biochem J 313:697–710

    Article  PubMed Central  PubMed  Google Scholar 

  • Hazell TJ, Macpherson RE, Gravelle BM, Lemon PW (2010) 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol 110(1):153–160. doi:10.1007/s00421-010-1474-y

    Article  PubMed  Google Scholar 

  • Hazell TJ, Olver TD, Hamilton CD, Lemon PW (2012) Two minutes of sprint-interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. Int J Sport Nutr Exerc Metab 22(4):276–283

    PubMed  Google Scholar 

  • Heydari M, Freund J, Boutcher SH (2012) The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes 2012:480467. doi:10.1155/2012/480467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ (2011) Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc 43(10):1849–1856. doi:10.1249/MSS.0b013e3182199834

    Article  CAS  PubMed  Google Scholar 

  • Hosoda H, Doi K, Nagaya N, Okumura H, Nakagawa E, Enomoto M, Ono F, Kangawa K (2004) Optimum collection and storage conditions for ghrelin measurements: octanoyl modification of ghrelin is rapidly hydrolyzed to desacyl ghrelin in blood samples. Clin Chem 50 (6):1077-1080. doi:10.1373/clinchem.2003.025841

  • Jensen TE, Richter EA (2012) Regulation of glucose and glycogen metabolism during and after exercise. J Physiol 590:1069–1076. doi:10.1113/jphysiol.2011.224972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karatzaferi C, de Haan A, Ferguson RA, van Mechelen W, Sargeant AJ (2001a) Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflugers Arch 442(3):467–474. doi:10.1007/s004240100552

    Article  CAS  PubMed  Google Scholar 

  • Karatzaferi C, de Haan A, van Mechelen W, Sargeant AJ (2001b) Metabolism changes in single human fibres during brief maximal exercise. Exp Physiol 86(3):411–415. doi:10.1113/eph8602223

    Article  CAS  PubMed  Google Scholar 

  • Kelly B, King JA, Goerlach J, Nimmo MA (2013) The impact of high-intensity intermittent exercise on resting metabolic rate in healthy males. Eur J Appl Physiol 113(12):3039–3047. doi:10.1007/s00421-013-2741-5

    Article  CAS  PubMed  Google Scholar 

  • King JA, Wasse LK, Broom DR, Stensel DJ (2010) Influence of brisk walking on appetite, energy intake, and plasma acylated ghrelin. Med Sci Sports Exerc 42(3):485–492. doi:10.1249/MSS.0b013e3181ba10c4

    Article  CAS  PubMed  Google Scholar 

  • Korkiakangas EE, Alahuhta MA, Laitinen JH (2009) Barriers to regular exercise among adults at high risk or diagnosed with type 2 diabetes: a systematic review. Health Promot Int 24(4):416–427. doi:10.1093/heapro/dap031

    Article  PubMed  Google Scholar 

  • Laforgia J, Withers RT, Shipp NJ, Gore CJ (1997) Comparison of energy expenditure elevations after submaximal and supramaximal running. J Appl Physiol 82(2):661–666

    CAS  PubMed  Google Scholar 

  • Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ (2010) A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol 588:1011–1022. doi:10.1113/jphysiol.2009.181743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ (2011) An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 300(6):R1303–R1310. doi:10.1152/ajpregu.00538.2010

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Cao W (2009) p38 mitogen-activated protein kinase: a critical node linking insulin resistance and cardiovascular diseases in type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets 9(1):38–46. doi:10.2174/187153009787582397

    Article  CAS  PubMed  Google Scholar 

  • McBride A, Hardie DG (2009) AMP-activated protein kinase-a sensor of glycogen as well as AMP and ATP? Acta Physiol 196(1):99–113. doi:10.1111/j.1748-1716.2009.01975.x

    Article  CAS  Google Scholar 

  • McBride A, Ghilagaber S, Nikolaev A, Hardie DG (2009) The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab 9(1):23–34. doi:10.1016/j.cmet.2008.11.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGee SL, Howlett KF, Starkie RL, Cameron-Smith D, Kemp BE, Hargreaves M (2003) Exercise increases nuclear AMPK alpha2 in human skeletal muscle. Diabetes 52(4):926–928. doi:10.2337/diabetes.52.4.926

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB (2012) Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol 112(7):2767–2775. doi:10.1007/s00421-011-2254-z

    Article  PubMed  Google Scholar 

  • Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ (1999) Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol 277(5 Pt 1):E890–E900

    CAS  PubMed  Google Scholar 

  • Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588:4795–4810. doi:10.1113/jphysiol.2010.199448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Philp A, Hargreaves M, Baar K (2012) More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab 302(11):E1343–E1351. doi:10.1152/ajpendo.00004.2012

    Article  CAS  PubMed  Google Scholar 

  • Raja MK, Raymer GH, Moran GR, Marsh G, Thompson RT (2006) Changes in tissue water content measured with multiple-frequency bioimpedance and metabolism measured with 31P-MRS during progressive forearm exercise. J Appl Physiol 101(4):1070–1075. doi:10.1152/japplphysiol.01322.2005

    Article  PubMed  Google Scholar 

  • Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ (2008) Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol 295(1):R236–R242. doi:10.1152/ajpregu.00069.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reichert FF, Barros AJ, Domingues MR, Hallal PC (2007) The role of perceived personal barriers to engagement in leisure-time physical activity. Am J Public Health 97(3):515–519. doi:10.2105/AJPH.2005.070144

    Article  PubMed Central  PubMed  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287(3):R502–R516. doi:10.1152/ajpregu.00114.2004

    Article  CAS  PubMed  Google Scholar 

  • Sevits KJ, Melanson EL, Swibas T, Binns SE, Klochak AL, Lonac MC, Peltonen GL, Scalzo RL, Schweder MM, Smith AM, Wood LM, Melby CL, Bell C (2013) Total daily energy expenditure is increased following a single bout of sprint interval training. Physiol Rep 1(5):e00131. doi:10.1002/phy2.131

    Article  PubMed Central  PubMed  Google Scholar 

  • Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG, Wagenmakers AJ, Shaw CS (2013) Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 591:657–675. doi:10.1113/jphysiol.2012.240952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York

    Google Scholar 

  • Sim AY, Wallman KE, Fairchild TJ, Guelfi KJ (2013) High-intensity intermittent exercise attenuates ad libitum energy intake. Int J Obes 38(3):417–422. doi:10.1038/ijo.2013.102

    Article  Google Scholar 

  • Skelly LE, Andrews PC, Gillen JB, Martin BJ, Percival ME, Gibala MJ (2014) High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment. Appl Physiol Nutr Metab 39(7):845–848. doi:10.1139/apnm-2013-0562

    Article  CAS  PubMed  Google Scholar 

  • Steinberg GR, Watt MJ, McGee SL, Chan S, Hargreaves M, Febbraio MA, Stapleton D, Kemp BE (2006) Reduced glycogen availability is associated with increased AMPKalpha2 activity, nuclear AMPKalpha2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Appl Physiol Nutr Metab 31(3):302–312. doi:10.1139/h06-003

    Article  CAS  PubMed  Google Scholar 

  • Stensel D (2010) Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control. Ann Nutr Metab 57(2):36–42. doi:10.1159/000322702

    Article  CAS  PubMed  Google Scholar 

  • Stokes KA, Gilbert KL, Hall GM, Andrews RC, Thompson D (2013) Different responses of selected hormones to three types of exercise in young men. Eur J Appl Physiol 113(3):775–783. doi:10.1007/s00421-012-2487-5

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky MA, Pearce E, Smith K, Lach B (2011) Suction-modified Bergström muscle biopsy technique: experience with 13,500 procedures. Muscle Nerve 43(5):717–725. doi:10.1002/mus.21945

    Article  PubMed  Google Scholar 

  • Tjønna AE, Leinan IM, Bartnes AT, Jenssen BM, Gibala MJ, Winett RA, Wisløff U (2013) Low- and High-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PLoS One 8(5):e65382. doi:10.1371/journal.pone.0065382

    Article  PubMed Central  PubMed  Google Scholar 

  • Trapp EG, Chisholm DJ, Freund J, Boutcher SH (2008) The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes 32(4):684–691. doi:10.1038/sj.ijo.0803781

    Article  CAS  Google Scholar 

  • Tucker JM, Welk GJ, Beyler NK (2011) Physical activity in U.S.: adults compliance with the Physical Activity Guidelines for Americans. Am J Prev Med 40(4):454–461. doi:10.1016/j.amepre.2010.12.016

    Article  PubMed  Google Scholar 

  • Ueda SY, Yoshikawa T, Katsura Y, Usui T, Nakao H, Fujimoto S (2009) Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. J Endocrinol 201(1):151–159. doi:10.1677/JOE-08-0500

    Article  CAS  PubMed  Google Scholar 

  • van Loon LJC, Greenhaff PL, Teodosiu DC, Saris WHM, Wagenmakers AJM (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536:295–304. doi:10.1111/j.1469-7793.2001.00295.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Vincent S, Berthon P, Zouhal H, Moussa E, Catheline M, Bentue-Ferrer D, Gratas-Delamarche A (2004) Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. Eur J Appl Physiol 91(1):15–21. doi:10.1007/s00421-003-0957-5

    Article  CAS  PubMed  Google Scholar 

  • Wasse LK, Sunderland C, King JA, Miyashita M, Stensel DJ (2013) The influence of vigorous running and cycling exercise on hunger perceptions and plasma acylated ghrelin concentrations in lean young men. Appl Physiol Nutr Metab 38(1):1–6. doi:10.1139/apnm-2012-0154

    Article  CAS  PubMed  Google Scholar 

  • Whyte LJ, Gill JM, Cathcart AJ (2010) Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 59(10):1421–1428. doi:10.1016/j.metabol.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  • Williams CB, Zelt JGE, Castellani LN, Little JP, Jung ME, Wright DC, Tschakovsky ME, Gurd BJ (2013) Changes in mechanisms proposed to mediate fat loss following an acute bout of high-intensity interval and endurance exercise. Appl Physiol Nutr Metab. doi:10.1139/apnm-2013-0101

    PubMed Central  Google Scholar 

  • Wynne K, Stanley S, McGowan B, Bloom S (2005) Appetite control. J Endocrinol 184(2):291–318. doi:10.1677/joe.1.05866

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. James Betts, Jacqueline Hutchinson, James Lloyd, Emily Mumford, Patrick Radley, and Catherine Thomas for assistance with data collection, and Samantha Sargant for providing technical assistance with the biochemical analysis of the muscle samples. RSM is supported by a PhD studentship provided by the Department for Health, University of Bath. FK and GDH thank MRC, Diabetes UK, and the British Heart Foundation for grant support.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. J. Vollaard.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metcalfe, R.S., Koumanov, F., Ruffino, J.S. et al. Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT). Eur J Appl Physiol 115, 2321–2334 (2015). https://doi.org/10.1007/s00421-015-3217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3217-6

Keywords

Navigation