Skip to main content

Advertisement

Log in

Phase reduction and phase-based optimal control for biological systems: a tutorial

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A powerful technique for the analysis of nonlinear oscillators is the rigorous reduction to phase models, with a single variable describing the phase of the oscillation with respect to some reference state. An analog to phase reduction has recently been proposed for systems with a stable fixed point, and phase reduction for periodic orbits has recently been extended to take into account transverse directions and higher-order terms. This tutorial gives a unified treatment of such phase reduction techniques and illustrates their use through mathematical and biological examples. It also covers the use of phase reduction for designing control algorithms which optimally change properties of the system, such as the phase of the oscillation. The control techniques are illustrated for example neural and cardiac systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, Rougemont JD (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–406

    Article  CAS  PubMed  Google Scholar 

  2. Brown E, Moehlis J, Holmes P (2004) On the phase reduction and response dynamics of neural oscillator populations. Neural Comput 16:673–715

    Article  PubMed  Google Scholar 

  3. Cabré X, Fontich E, Llave RDL (2005) The parametrization method for invariant manifolds III: overview and applications. J Differ. Equs. 218:444–515

    Article  Google Scholar 

  4. Campbell A, Gonzalez A, Gonzalez DL, Piro O, Larrondo HA (1989) Isochrones and the dynamics of kicked oscillators. Phys A Stat Theor Phys 155(3):565–584

    Article  Google Scholar 

  5. Castejón O, Guillamon A, Huguet G (2013) Phase-amplitude response functions for transient-state stimuli. J Math Neurosci 3:1–26

    Article  Google Scholar 

  6. Chen CC, Litvak V, Gilbertson T, Kuhn A, Lu CS, Lee ST, Tsai CH, Tisch S, Limousin P, Hariz M, Brown P (2007) Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Exp Neurol 205(1):214–221

    Article  PubMed  Google Scholar 

  7. Cherry EM, Evans SJ (2008) Properties of two human atrial cell models in tissue: restitution, memory, propagation, and reentry. J Theor Biol 254(3):674–690

    Article  PubMed Central  PubMed  Google Scholar 

  8. Christini DJ, Riccio ML, Culianu CA, Fox JJ, Karma A Jr, G RF (2006) Control of electrical alternans in canine cardiac Purkinje fibers. Phys Rev Lett 96(10):104101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Coddington EA, Levinson N (1955) Theory of ordinary differential equations. McGraw-Hill, New York

    Google Scholar 

  10. Couzin-Fuchs E, Kiemel T, Gal O, Ayali A, Holmes P (2015) Intersegmental coupling and recovery from perturbations in freely running cockroaches. J Exp Biol 218:285–297

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cui J, Canavier CC, Butera RJ (2009) Functional phase response curves: a method for understanding synchronization of adapting neurons. J Neurophysiol 102(1):387–398

    Article  PubMed Central  PubMed  Google Scholar 

  12. Danzl P, Hansen R, Bonnet G, Moehlis J (2008) Partial phase synchronization of neural populations due to random Poisson inputs. J Comput Neurosci 25(1):141–157

    Article  PubMed  Google Scholar 

  13. Danzl P, Hespanha J, Moehlis J (2009) Event-based minimum-time control of oscillatory neuron models: phase radnomization, maximal spike rate increase, and desynchronization. Biol Cybern 101:387–399

    Article  PubMed  Google Scholar 

  14. Danzl P, Nabi A, Moehlis J (2010) Charge-balanced spike timing control for phase models of spiking neurons. Discrete Contin Dyn Syst 28:1413–1435

    Article  Google Scholar 

  15. Dasanayake I, Li JS (2011) Optimal design of minimum-power stimuli for phase models of neuron oscillators. Phys Rev E 83:061,916

    Article  CAS  Google Scholar 

  16. Dasanayake I, Li JS (2015) Constrained charge-balanced minimum-power controls for spiking neuron oscillators. Syst Control Lett 75:124–130

    Article  Google Scholar 

  17. Detrixhe M, Doubeck M, Moehlis J, Gibou F (2016) A fast Eulerian approach for computation of global isochrons in high dimensions. SIAM J Appl Dyn Syst 15:1501–1527

    Article  Google Scholar 

  18. Efimov D, Sacre P, Sepulchre R (2009) Controlling the phase of an oscillator: a phase response approach. In: Proceedings of the 48th IEEE conference on decision and control. Shanghai, China, pp 7692–7697

  19. Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979–1001

    Article  CAS  PubMed  Google Scholar 

  20. Ermentrout G (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia

    Book  Google Scholar 

  21. Ermentrout G, Glass L, Oldeman B (2012) The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation. Neural Comput 24:3111–3125

    Article  PubMed  Google Scholar 

  22. Ermentrout G, Kopell N (1984) Frequency plateaus in a chain of weakly coupled oscillators. SIAM J Math Anal 15(3):215–237

    Article  Google Scholar 

  23. Ermentrout G, Kopell N (1991) Multiple pulse interactions and averaging in coupled neural oscillators. J Math Biol 29:195–217

    Article  Google Scholar 

  24. Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience. Springer, Berlin

    Book  Google Scholar 

  25. Forger DB, Paydarfar D (2004) Starting, stopping, and resetting biological oscillators: in search of optimal perturbations. J Theor Biol 230:521–532

    Article  PubMed  Google Scholar 

  26. Fox JJ, McHarg JL, Gilmour RF (2002) Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol 282(2):H516–H530

    Article  CAS  PubMed  Google Scholar 

  27. Garzón A, Grigoriev RO, Fenton FH (2014) Continuous-time control of alternans in long Purkinje fibers. Chaos Interdiscip J Nonlinear Sci 24(3):033124

    Article  Google Scholar 

  28. Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton

    Google Scholar 

  29. Glendinning P (1994) Stability, instability and chaos: an introduction to the theory of nonlinear differential equations. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Goldstein H (1980) Classical mechanics, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  31. Gray RA (2014) Theory of rotors and arrhythmias. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology: from cell to bedside, 6th edn. WB Saunders Co Ltd, New York, pp 341–350

    Chapter  Google Scholar 

  32. Grimshaw R (1993) Nonlinear ordinary differential equations. CRC Press, Baca Raton

    Google Scholar 

  33. Guckenheimer J (1975) Isochrons and phaseless sets. J Math Biol 1:259–273

    Article  CAS  PubMed  Google Scholar 

  34. Guckenheimer J (1995) Phase portraits of planar vector fields: computer proofs. Exp Math 4(2):153–165

    Article  Google Scholar 

  35. Guckenheimer J, Holmes PJ (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, New York

    Book  Google Scholar 

  36. Guckenheimer J, Kuznetsov YA (2007) Bautin bifurcation. Scholarpedia 2(5):1853

    Article  Google Scholar 

  37. Guillamon A, Huguet G (2009) A computational and geometric approach to phase resetting curves and surfaces. SIAM J Appl Dyn Syst 8(3):1005–1042

    Article  Google Scholar 

  38. Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comput 7:307–337

    Article  CAS  PubMed  Google Scholar 

  39. Holt A, Wilson D, Shinn M, Moehlis J, Netoff T (2016) Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease. PLoS Comput Biol 13:e1005001

    Google Scholar 

  40. Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, New York

    Book  Google Scholar 

  41. Hoppensteadt FC, Keener J (1982) Phase locking of biological clocks. J Math Biol 15:339–349

    Article  CAS  PubMed  Google Scholar 

  42. Huguet G, de la Llave R (2013) Computation of limit cycles and their isochrons: fast algorithms and their convergence. SIAM J Appl Dyn Syst 12:1763–1802

    Article  Google Scholar 

  43. Izhikevich E (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, London

    Google Scholar 

  44. Izhikevich EM (2000) Phase equations for relaxation oscillators. SIAM J Appl Math 60:1789–1804

    Article  Google Scholar 

  45. Josic K, Shea-Brown ET, Moehlis J (2006) Isochron. Scholarpedia 1(8):1361

    Article  Google Scholar 

  46. Kenig E, Cross M, Villanueva L, Karabalin R, Matheny M, Lifshitz R, Roukes M (2012) Optimal operating points of oscillators using nonlinear resonators. Phys Rev E 86:056207

    Article  CAS  Google Scholar 

  47. Kirk DE (1970) Optimal control theory: an introduction. Dover Publications Inc., New York

    Google Scholar 

  48. Kiss IZ, Rusin CG, Kori H, Hudson JL (2007) Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316:1886–1889

    Article  CAS  PubMed  Google Scholar 

  49. Kopell N, Howard L (1973) Plane wave solutions to reaction–diffusion equations. Stud Appl Math 52(4):291–328

    Article  Google Scholar 

  50. Kralemann B, Frühwirth M, Pikovsky A, Rosenblum M, Kenner T, Schaefer J, Moser M (2013) In vivo cardiac phase response curve elucidates human respiratory heart rate variability. Nat Commun 4:2418

    Article  PubMed  Google Scholar 

  51. Kralemann B, Pikovsky A, Rosenblum M (2014) Reconstructing effective phase connectivity of oscillator networks from observations. New J Phys 16(8):085013

    Article  Google Scholar 

  52. Krishnan GP, Bazhenov M, Pikovsky A (2013) Multipulse phase resetting curves. Phys Rev E 88(4):042902

    Article  CAS  Google Scholar 

  53. Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  Google Scholar 

  54. Kuznetsov Y (1998) Elements of applied bifurcation theory, 2nd edn. Springer, New York

    Google Scholar 

  55. Langfield P, Krauskopf B, Osinga H (2014) Solving Winfree’s puzzle: the isochrons in the FitzHugh-Nagumo model. Chaos 24:013131

    Article  PubMed  Google Scholar 

  56. Langfield P, Krauskopf B, Osinga H (2015) Forward-time and backward-time isochrons, and their interactions. SIAM J Appl Dyn Syst 14:1418–1453

    Article  Google Scholar 

  57. Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  58. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO (2000) High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci 20(20):7766–7775

    Article  CAS  PubMed  Google Scholar 

  59. Malkin I (1949) The methods of Lyapunov and Poincare in the theory of nonlinear oscillations. Gostekhizdat, Moscow-Leningrad

    Google Scholar 

  60. Matchen T, Moehlis J (2017) Real-time stabilization of neurons into clusters. In: Proceedings of the 2017 American control conference. Seattle, pp 2805–2810

  61. Matchen T, Moehlis J (2018) Phase model-based neuron stabilization into arbitrary clusters. J Comput Neurosci 44:363–378

    Article  PubMed  Google Scholar 

  62. Mauroy A (2014) Converging to and escaping from the global equilibrium: isostables and optimal control. In: Proceedings of the 53rd IEEE conference on decision and control. Los Angeles, pp 5888–5893

  63. Mauroy A, Mezic I (2018) Global computation of phase-amplitude reduction for limit-cycle dynamics. Chaos. https://doi.org/10.1063/1.5030175

  64. Mauroy A, Mezic I (2012) On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. Chaos 22:033112

    Article  CAS  PubMed  Google Scholar 

  65. Mauroy A, Mezić I, Moehlis J (2013) Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Physica D 261:19–30

    Article  Google Scholar 

  66. Mauroy A, Rhoads B, Moehlis J, Mezic I (2014) Global isochrons and phase sensitivity of bursting neurons. SIAM J Appl Dyn Syst 13:306–338

    Article  Google Scholar 

  67. Merrill D, Bikson M, Jefferys J (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–98

    Article  PubMed  Google Scholar 

  68. Moehlis J (2014) Improving the precision of noisy oscillators. Physica D 272:8–17

    Article  Google Scholar 

  69. Moehlis J, Shea-Brown E, Rabitz H (2006) Optimal inputs for phase models of spiking neurons. ASME J Comput Nonlinear Dyn 1:358–367

    Article  Google Scholar 

  70. Monga B, Froyland G, Moehlis J (2018) Synchronizing and desynchronizing neural populations through phase distribution control. In: Proceedings of the 2018 American control conference. Milwaukee, pp 2808–2813

  71. Monga B, Moehlis J (2018) Optimal phase control of biological oscillators using augmented phase reduction. Biol Cybern. https://doi.org/10.1007/s00422-018-0764-z

    Article  PubMed  Google Scholar 

  72. Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Nabi A, Mirzadeh M, Gibou F, Moehlis J (2013) Minimum energy desynchronizing control for coupled neurons. J Comput Neurosci 34:259–271

    Article  PubMed  Google Scholar 

  74. Nabi A, Moehlis J (2009) Charge-balanced optimal inputs for phase models of spiking neurons. In: Proceedings of the 2009 ASME dynamic systems and control conference. DSCC2009-2541

  75. Nabi A, Moehlis J (2012) Time optimal control of spiking neurons. J Math Biol 64:981–1004

    Article  PubMed  Google Scholar 

  76. Nabi A, Stigen T, Moehlis J, Netoff T (2013) Minimum energy control for in vitro neurons. J Neural Eng 10(3):036005

    Article  PubMed  Google Scholar 

  77. Narayan SM (2006) T-wave alternans and the susceptibility to ventricular arrhythmias. J Am Coll Cardiol 47(2):269–281

    Article  PubMed  Google Scholar 

  78. Netoff T, Schwemmer M, Lewis T (2012) Experimentally estimating phase response curves of neurons: theoretical and practical issues. In: Schultheiss NW, Prinz AA, Butera RJ (eds) Phase response curves in neuroscience. Springer, pp 95–129

  79. Nolasco JB, Dahlen RW (1968) A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol 25(2):191–196

    Article  CAS  PubMed  Google Scholar 

  80. Osinga H, Moehlis J (2010) A continuation method for computing global isochrons. SIAM J Appl Dyn Syst 9:1201–1228

    Article  Google Scholar 

  81. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS (1999) Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99(10):1385–1394

    Article  CAS  PubMed  Google Scholar 

  82. Pruvot EJ, Katra RP, Rosenbaum DS, Laurita KR (2004) Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ Res 94(8):1083–1090

    Article  CAS  PubMed  Google Scholar 

  83. Qu Z, Nivala M, Weiss JN (2013) Calcium alternans in cardiac myocytes: order from disorder. J Mol Cell Cardiol 58:100–109

    Article  CAS  PubMed  Google Scholar 

  84. Revzen S, Guckenheimer JM (2008) Estimating the phase of synchronized oscillators. Phys Rev E 78(5):051907

    Article  CAS  Google Scholar 

  85. Revzen S, Guckenheimer JM (2012) Finding the dimension of slow dynamics in a rhythmic system. J R Soc Interface 9(70):957–971

    Article  PubMed  Google Scholar 

  86. Roberts AJ (1989) Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems. J Aust Math Soc Ser B Appl Math 31(01):48–75

    Article  Google Scholar 

  87. Rogers J, McCulloch A (1994) A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng 41:743–757

    Article  CAS  PubMed  Google Scholar 

  88. Rubin J, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–235

    Article  PubMed  Google Scholar 

  89. Schwabedal JTC, Kantz H (2016) Optimal extraction of collective oscillations from unreliable measurements. Phys Rev Lett 116(10):104101

    Article  CAS  PubMed  Google Scholar 

  90. Shaw K, Park YM, Chiel H, Thomas P (2012) Phase resetting in an asymptotically phaseless system: on the response of limit cycles verging on a heteroclinic orbit. SIAM J Appl Dyn Syst 11:350–391

    Article  Google Scholar 

  91. Shirasaka S, Kurebayashi W, Nakao H (2017) Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems. Chaos 27:023119

    Article  PubMed  Google Scholar 

  92. Sootla A, Mauroy A, Ernst D (2017) An optimal control formulation of pulse-based control using Koopman operator. arXiv preprint arXiv:1707.08462

  93. Suvak O, Demir A (2010) Quadratic approximations for the isochrons of oscillators: a general theory, advanced numerical methods, and accurate phase computations. IEEE Trans Comput Aided Des Integr Circuits Syst 29(8):1215–1228

    Article  Google Scholar 

  94. Takeshita D, Feres R (2010) Higher order approximation of isochrons. Nonlinearity 23(6):1303–1323

    Article  Google Scholar 

  95. Tass PA (1999) Phase resetting in medicine and biology. Springer, New York

    Book  Google Scholar 

  96. Tass PA (2001) Effective desynchronization by means of double-pulse phase resetting. Europhys Lett 53:15–21

    Article  CAS  Google Scholar 

  97. Tass PA (2003) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 89(2):81–88

    Article  PubMed  Google Scholar 

  98. Thomas P, Lindner B (2014) Asymptotic phase for stochastic oscillators. Phys Rev Lett 113:254101

    Article  CAS  PubMed  Google Scholar 

  99. Tolkacheva EG, Schaeffer DG, Gauthier DJ, Krassowska W (2003) Condition for alternans and stability of the 1:1 response pattern in a memory model of paced cardiac dynamics. Phys Rev E 67(3):031904

    Article  CAS  Google Scholar 

  100. Topçu C, Frühwirth M, Moser M, Rosenblum M, Pikovsky A (2018) Disentangling respiratory sinus arrhythmia in heart rate variability records. Physiol Meas 39(5):054002

    Article  PubMed  Google Scholar 

  101. Wedgwood K, Lin K, Thul R, Coombes S (2013) Phase-amplitude descriptions of neural oscillator models. J Math Neurosci 3(1):1–22

    Article  Google Scholar 

  102. Wichmann T, DeLong MR, Guridi J, Obeso JA (2011) Milestones in research on the pathophysiology of Parkinson’s disease. Mov Disord 26(6):1032–1041

    Article  PubMed Central  PubMed  Google Scholar 

  103. Wiggins S (1994) Normally hyperbolic invariant manifolds in dynamical systems. Springer, New York

    Book  Google Scholar 

  104. Wilson D, Ermentrout B (2018) An operational definition of phase characterizes the transient response of perturbed limit cycle oscillators. SIAM J Appl Dyn Syst (In press)

  105. Wilson D, Ermentrout B (2018) Greater accuracy and broadened applicability of phase reduction using isostable coordinates. J Math Biol 76(1–2):37–66

    Article  PubMed  Google Scholar 

  106. Wilson D, Holt AB, Netoff TI, Moehlis J (2015) Optimal entrainment of heterogeneous noisy neurons. Front Neurosci 9:192

    Article  PubMed Central  PubMed  Google Scholar 

  107. Wilson D, Moehlis J (2014) An energy-optimal approach for entrainment of uncertain circadian oscillators. Biophys J 107:1744–1755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Wilson D, Moehlis J (2014) An energy-optimal methodology for synchronization of excitable media. SIAM J Appl Dyn Syst 13(2):944–957

    Article  Google Scholar 

  109. Wilson D, Moehlis J (2014) Locally optimal extracellular stimulation for chaotic desynchronization of neural populations. J Comput Neurosci 37:243–257

    Article  PubMed Central  PubMed  Google Scholar 

  110. Wilson D, Moehlis J (2014) Optimal chaotic desynchronization for neural populations. SIAM J Appl Dyn Syst 13:276–305

    Article  Google Scholar 

  111. Wilson D, Moehlis J (2015) Determining individual phase response curves from aggregate population data. Phys Rev E 92:022902

    Article  CAS  Google Scholar 

  112. Wilson D, Moehlis J (2015) Extending phase reduction to excitable media: theory and applications. SIAM Rev 57:201–222

    Article  Google Scholar 

  113. Wilson D, Moehlis J (2016) Isostable reduction of periodic orbits. Phys Rev E 94:052213

    Article  PubMed  Google Scholar 

  114. Wilson D, Moehlis J (2017) Spatiotemporal control to eliminate cardiac alternans using isostable reduction. Phys D Nonlinear Phenom 342:32–44

    Article  Google Scholar 

  115. Winfree A (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:14–42

    Article  Google Scholar 

  116. Winfree A (1974) Patterns of phase compromise in biological cycles. J Math Biol 1:73–95

    Article  Google Scholar 

  117. Winfree A (2001) The geometry of biological time, 2nd edn. Springer, New York

    Book  Google Scholar 

  118. Zlotnik A, Chen Y, Kiss I, Tanaka HA, Li JS (2013) Optimal waveform for fast entrainment of weakly forced nonlinear oscillators. Phys Rev Lett 111:024102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this work by National Science Foundation Grants NSF-1635542 and NSF-1602841 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Moehlis.

Additional information

Communicated by Peter J. Thomas.

Appendices

Appendix A: Models

In this appendix, we give details of the mathematical models used in the main text.

Thalamic neuron model

The thalamic neuron model is given as

$$\begin{aligned} \dot{v}= & {} \frac{-I_L-I_\mathrm{Na}-I_K-I_T+I_\mathrm{b}}{C_m}+u(t),\\ \dot{h}= & {} \frac{h_{\infty }-h}{\tau _h},\\ \dot{r}= & {} \frac{r_{\infty }-r}{\tau _r}, \end{aligned}$$

where

$$\begin{aligned} h_\infty= & {} 1/(1+\exp ((v+41)/4)),\\ r_\infty= & {} 1/(1+\exp ((v+84)/4)),\\ \alpha _h= & {} 0.128\exp (-(v+46)/18),\\ \beta _h= & {} 4/(1+\exp (-(v+23)/5)),\\ \tau _h= & {} 1/(\alpha _h+\beta _h),\\ \tau _r= & {} (28+\exp (-(v+25)/10.5)),\\ m_\infty= & {} 1/(1+\exp (-(v+37)/7)),\\ p_\infty= & {} 1/(1+\exp (-(v+60)/6.2)),\\ I_L= & {} g_L(v-e_L),\\ I_\mathrm{Na}= & {} g_\mathrm{Na}({m_\infty }^3)h(v-e_\mathrm{Na}),\\ I_K= & {} g_K((0.75(1-h))^4)(v-e_K),\\ I_T= & {} g_T(p_\infty ^2)r(v-e_T),\\ C_m= & {} 1, \qquad g_L = 0.05, \qquad e_L = -70, \\ g_\mathrm{Na}= & {} 3, \qquad e_\mathrm{Na} = 50,\\ g_K= & {} 5,\qquad e_K = -90,\qquad g_T = 5,\\ e_T= & {} 0, \qquad I_\mathrm{b} = 5. \end{aligned}$$

Morris–Lecar model

The Morris–Lecar model is given as

$$\begin{aligned} C_M\dot{v}= & {} I_\mathrm{b}-g_L(v-E_L)-g_Kn(v-E_K)\\&-g_\mathrm{Ca}m_\infty (v)(v-E_\mathrm{Ca}),\\ \dot{n}= & {} \phi (n_\infty (v)-n)/\tau _n(v),\\ m_\infty (v)= & {} 0.5\left( 1+\tanh \left( \frac{v-v_1}{v_2}\right) \right) ,\\ \tau _n(v)= & {} \frac{1}{\left( \cosh \left( \frac{v-v_3}{2v_4}\right) \right) },\\ n_\infty (v)= & {} 0.5\left( 1+\tanh \left( \frac{v-v_3}{v_4}\right) \right) ,\\ \phi= & {} 0.067 , \quad g_\mathrm{Ca}=4,\quad g_K=8, \quad g_L=2, \\ E_\mathrm{Ca}= & {} 120, \quad E_k=-84, \\ E_l= & {} -60, \quad v_1=-1.2, \quad v_2=18, \quad v_3=12, \\ v_4= & {} 17.4, \quad C_M=20. \end{aligned}$$

Fox–McHarg–Gilmour (FMG) model

The FMG model [26] describes the electrophysiological behavior of a canine ventricular myocytes with behavior governed by various potassium, sodium, and calcium currents. The transmembrane voltage dynamics are governed by the flow of ionic current across the cell membrane

$$\begin{aligned} \dot{V} = -I_{\mathrm{ion}} - I_{\mathrm{stim}}. \end{aligned}$$
(122)

Here \(I_{\mathrm{stim}}\) represents a stimulus current used to elicit action potentials, and \(I_{\mathrm{ion}}\) is the total membrane current density, both of which have units of \(\upmu \hbox {A}/\upmu \hbox {F}\). \(I_{\mathrm{ion}}\) is comprised of 13 individual currents, which are determined by 13 total state variables. A full description of the equations and nominal parameters is given in [26].

Appendix B: Derivation of the Euler–Lagrange equations

The Euler–Lagrange equations can be derived using the methods of analytical mechanics [30] or optimal control theory [47]. Suppose we want to find the function q(t) which extremizes the functional

$$\begin{aligned} C[q(t)] = \int _0^T {{\mathcal {L}}}(q,\dot{q}) \hbox {d}t. \end{aligned}$$

The functional derivative has the property that for any function v(t),

$$\begin{aligned} \frac{\delta C}{\delta q} \cdot v= & {} \lim _{\epsilon \rightarrow 0} \frac{C[q+\epsilon v] - C[q]}{\epsilon } \\= & {} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon } \int _0^T \left\{ {{\mathcal {L}}}(q+\epsilon v, \dot{q} + \epsilon \dot{v}) - {{\mathcal {L}}}(q,\dot{q}) \right\} \hbox {d}t \\= & {} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon } \int _0^T \left\{ {{\mathcal {L}}}(q,\dot{q}) + \frac{\partial {{\mathcal {L}}}}{\partial q} \epsilon v + \frac{\partial {{\mathcal {L}}}}{\partial \dot{q}} \epsilon \dot{v} \right. \\&\left. \quad + \cdots - {{\mathcal {L}}}(q,\dot{q}) \right\} \hbox {d}t \\= & {} \int _0^T \left( \frac{\partial {{\mathcal {L}}}}{\partial q} v + \frac{\partial L}{\partial \dot{q}} \dot{v} \right) \hbox {d}t \\= & {} \int _0^T \left[ \frac{\partial {{\mathcal {L}}}}{\partial q} - \frac{d}{dt} \left( \frac{\partial {{\mathcal {L}}}}{\partial \dot{q}} \right) \right] v dt + \left[ \frac{\partial {{\mathcal {L}}}}{\partial \dot{q}} v \right] _0^\mathrm{T}, \end{aligned}$$

where the last equation follows from integration by parts applied to the second term of the previous line. If we suppose that \(v(0) = v(T) = 0\), then

$$\begin{aligned} \frac{\delta C}{\delta q} \cdot v = \int _0^T \left[ \frac{\partial {{\mathcal {L}}}}{\partial q} - \frac{d}{dt} \left( \frac{\partial {{\mathcal {L}}}}{\partial \dot{q}} \right) \right] v \hbox {d}t. \end{aligned}$$

For this to be an extremum, it must hold for any v. Therefore, we obtain the Euler–Lagrange equation

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial {{\mathcal {L}}}}{\partial \dot{q}} \right) = \frac{\partial {{\mathcal {L}}}}{\partial q}. \end{aligned}$$
(123)

To incorporate constraints into this approach, it is instructive to first consider the simpler optimization problem where one wants to find an extremum of the function \(\mathbf{f}(\mathbf{x})\) subject to the constraint that \(\mathbf{g}(\mathbf{x}) = \mathbf{c}\). Recognizing that at an extremum the level surface of \(\mathbf{f}(\mathbf{x})\) must be tangent to the surface defined by \(\mathbf{g}(\mathbf{x}) = \mathbf{c}\), we see that

$$\begin{aligned} \nabla \mathbf{f} = \lambda \nabla \mathbf{g} \end{aligned}$$
(124)

for some scalar \(\lambda \), which is called the Lagrange multiplier. Finding the extremum of \(\mathbf{f}\) while simultaneously satisfying (124) is equivalent to finding the extremum of

$$\begin{aligned} \mathbf{F}(\mathbf{x},\lambda ) \equiv \mathbf{f}(\mathbf{x}) - \lambda [\mathbf{g}(\mathbf{x}) - \mathbf{c}]. \end{aligned}$$

Indeed,

$$\begin{aligned} \nabla \mathbf{F} = 0 \quad\Rightarrow & {} \quad \nabla \mathbf{f} = \lambda \nabla \mathbf{g}, \\ \frac{\partial \mathbf{F}}{\partial \lambda } = 0 \quad\Rightarrow & {} \quad \mathbf{g}(\mathbf{x}) = \mathbf{c}. \end{aligned}$$

In optimal control problems, it is necessary to minimize or maximize the cost function subject to the constraint that the dynamics must satisfy the appropriate evolution equation. For example, consider the energy-optimal phase control problem of designing the input u(t) such that the cost function \({{\mathcal {G}}}[u(t)]\) given by (28) is minimized, subject to the constraint that the solution must satisfy (27). We can rewrite (27) as

$$\begin{aligned} \frac{\hbox {d} \theta }{\hbox {d}t} - \omega - Z(\theta ) u(t) = 0. \end{aligned}$$

Integrating this, we obtain

$$\begin{aligned} {{\mathcal {K}}}[u(t)] \equiv \int _0^{T_1} \left[ \frac{\hbox {d} \theta }{\hbox {d}t} - \omega - Z(\theta ) u(t) \right] \hbox {d}t = 0. \end{aligned}$$

We therefore want to find u(t) such that the following hold:

$$\begin{aligned} \frac{\delta {{\mathcal {G}}}[u(t)]}{\delta u} = 0, \quad {{\mathcal {K}}}[u(t)] = 0. \end{aligned}$$

By analogy with the above constrained optimization example, the level surfaces of \({{\mathcal {G}}}[u(t)]\) will be tangent to surfaces for which \({{\mathcal {K}}}[u(t)] = 0\). Thus,

$$\begin{aligned} \frac{\delta {{\mathcal {G}}}[u(t)]}{\delta u} = -\lambda (t) \frac{\delta {{\mathcal {K}}}[u(t)]}{\delta u} \end{aligned}$$
(125)

for some scalar function \(\lambda (t)\). [Without loss of generality, we have inserted a minus sign on the right-hand side of (125).]. Rearranging (125) gives

$$\begin{aligned} \frac{\delta }{\delta u} \left\{ {{\mathcal {G}}}[u(t)] + \lambda {{\mathcal {K}}}[u(t)] \right\} = 0, \end{aligned}$$

which is identical to the cost function (29). We now use (123) with q(t) taken in turn to be u(t), \(\lambda (t)\), and \(\theta (t)\), which gives Eqs. (3032) in the main text.

Appendix C: Solving a two-point boundary value problem

Consider a general two-point boundary value problem

$$\begin{aligned} \dot{y} = f(t,y), \quad y \in {\mathbb {R}}^n, \quad 0\le t \le b, \end{aligned}$$
(126)

with the linear boundary condition

$$\begin{aligned} B_0y(0)+B_by(b)=a, \quad B_0,\ B_b \in {\mathbb {R}}^{n\times n}. \end{aligned}$$

To solve such a boundary value problem, we integrate Eq. (126) with the initial guess \(c=y(0)\) and calculate the function g(c):

$$\begin{aligned} g(c)=B_0c+B_by(b)-a, \end{aligned}$$

where y(b) is the solution at time b with the initial condition c. If we had chosen the correct initial condition c, g(c) would be 0. Based on the current guess \(c^\nu \), and the \(g(c^\nu )\) value, we choose the next initial condition by the Newton Iteration as

$$\begin{aligned} c^{\nu +1}=c^\nu -\left( \left. \frac{\partial g}{\partial c}\right| _{c^\nu }\right) ^{-1}g(c^\nu ). \end{aligned}$$
(127)

We compute the Jacobian \(J=\left. \frac{\partial g}{\partial c}\right| _{c^\nu }\) numerically as

$$\begin{aligned} J_i=\frac{g^+-g^-}{2\epsilon }, \end{aligned}$$

where

$$\begin{aligned} g^+= & {} g\left( c^\nu +e_i \epsilon \right) ,\\ g^-= & {} g\left( c^\nu -e_i \epsilon \right) , \end{aligned}$$

\(J_i\) is the \(i\mathrm{th}\) column of J, \(\epsilon \) is a small number, and \(e_i\) is a column vector with 1 in the \(i\mathrm{th}\) position and 0 elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monga, B., Wilson, D., Matchen, T. et al. Phase reduction and phase-based optimal control for biological systems: a tutorial. Biol Cybern 113, 11–46 (2019). https://doi.org/10.1007/s00422-018-0780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-018-0780-z

Keywords

Navigation