Skip to main content
Log in

Electromechanical coupling in the cardiac myocyte; stretch-arrhythmia feedback

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The macroscopic hallmarks of the normal heartbeat are rapid onset of contraction and rapid relaxation and an inotropic response to both increased end diastolic volume and increased heart rate. At the microscopic level, the calcium ion (Ca2+) plays a crucial role in normal cardiac contraction. This paper reviews the cycle of Ca2+ fluxes during the normal heartbeat, which underlie the coupling between excitation and contraction (ECC) and permit a highly synchronized action of cardiac sarcomeres. Length dependence of the response of the regulatory sarcomeric proteins mediates the Frank–Starling Law of the heart. However, Ca2+ transport may go astray in heart disease and both jeopardize the exquisite mechanism of systole and diastole and triggering arrhythmias. The interplay between weakened and strong segments in nonuniform cardiac muscle may further lead to mechanoelectric feedback—or reverse excitation contraction coupling (RECC) mediating an early diastolic Ca2+ transient caused by the rapid force decrease during the relaxation phase. These rapid force changes in nonuniform muscle may cause arrhythmogenic Ca2+ waves to propagate by activation of neighbouring SR by diffusing Ca2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen DG, Kentish JC (1988) Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. J Physiol 407:489–503

    PubMed  CAS  Google Scholar 

  2. Allen DG, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac-muscle. J Physiol Lond 327:79–94

    PubMed  CAS  Google Scholar 

  3. Backx PH, ter Keurs HEDJ (1993) Fluorescent properties of rat cardiac trabeculae microinjected with fura-2 salt. Am J Physiol 264:H1098–H1110

    PubMed  CAS  Google Scholar 

  4. Backx PH, Gao WD, Azan-Backx MD, Marban (1995) The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae. J Gen Physiol 105:1–19

    Article  PubMed  CAS  Google Scholar 

  5. Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C (2009) Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci USA 106:22275–22280

    Article  PubMed  CAS  Google Scholar 

  6. Banijamali HS (1994) Force-interval relation in rat heart. Ph.D. Thesis, University of Calgary. Calgary.

  7. Banijamali HS, Gao WD, MacIntosh BR, ter Keurs HEDJ (1991) Force-interval relations of twitches and cold contractures in rat cardiac trabeculae: influence of ryanodine. Circ Res 69:937–948

    PubMed  CAS  Google Scholar 

  8. Baudino TA, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 291:H1015–H1026

    Article  PubMed  CAS  Google Scholar 

  9. Bers DM (2001) Excitation-contraction coupling and cardiac contractile force, 2nd edn. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Book  Google Scholar 

  10. Bootman MD, Higazi DR, Coombes S, Roderick HL (2006) Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci 119:3915–3925

    Article  PubMed  CAS  Google Scholar 

  11. Boyden PA, Pu JL, Pinto J, ter Keurs HEDJ (2000) Ca2+ transients and Ca2+ waves in Purkinje cells—role in action potential initiation. Circ Res 86:448–455

    PubMed  CAS  Google Scholar 

  12. Brette F, Orchard C (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92:1182–1192

    Article  PubMed  CAS  Google Scholar 

  13. Brette F, Orchard C (2007) Resurgence of cardiac T-tubule research. Physiology 22:167–173

    Article  PubMed  CAS  Google Scholar 

  14. Bucx JJJ (1995) Ischemia of the heart: a study of sarcomere dynamics and cellular metabolism. (Ph.D. Thesis). Erasmus University of Rotterdam, Rotterdam, The Netherlands.

  15. Cazorla O, Wu Y, Irving TC, Granzier H (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88:1028–1035

    Article  PubMed  CAS  Google Scholar 

  16. Cheng HP, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Article  PubMed  CAS  Google Scholar 

  17. Chen-Izu Y, McCulle SL, Ward CW, Soeller C, Allen BM, Rabang C, Cannell MB, Balke CW, Izu LT (2006) Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes. Biophys J 91:1–13

    Article  PubMed  Google Scholar 

  18. de Tombe PP, Mateja RD, Tachampa K, Mou YA, Farman GP, Irving TC (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48:851–858

    Article  PubMed  Google Scholar 

  19. Di Maio A, Keurs HET, Franzini-Armstrong C (2007) T-tubule profiles in Purkinje fibres of mammalian myocardium. J Muscle Res Cell Motil 28:115–121

    Article  PubMed  Google Scholar 

  20. Diaz ME, Graham HK, O'Neill SC, Trafford AW, Eisner DA (2005) The control of sarcoplasmic reticulum Ca content in cardiac muscle. Cell Calcium 38:391–396

    Article  PubMed  CAS  Google Scholar 

  21. Dobesh DP, Konhilas JP, de Tombe PP (2002) Cooperative activation in cardiac muscle: impact of sarcomere length. Am J Physiol Heart Circ Physiol 282:H1055–H1062

    PubMed  CAS  Google Scholar 

  22. Endoh M (2008) Cardiac Ca2+ Signaling and Ca2+ Sensitizers. Circ J 72:1915–1925

    Article  PubMed  CAS  Google Scholar 

  23. Fabiato A, Fabiato F (1979) Calcium and cardiac excitation-contraction coupling. Ann Rev Physiol 41:473–484

    Article  CAS  Google Scholar 

  24. Farman GP, Allen EJ, Schoenfelt KQ, Backx PH, de Tombe PP (2010) The role of thin filament cooperativity in cardiac length-dependent calcium activation. Biophys J 99:2978–2986

    Article  PubMed  CAS  Google Scholar 

  25. Fuchs F, Martyn DA (2005) Length-dependent Ca(2+) activation in cardiac muscle: some remaining questions. J Muscle Res Cell Motil 26:199–212

    Article  PubMed  CAS  Google Scholar 

  26. Fukuda N, Granzier H (2004) Role of the giant elastic protein titin in the Frank-Starling mechanism of the heart. Curr Vasc Pharmacol 2:135–139

    Article  PubMed  CAS  Google Scholar 

  27. Goo S, Joshi P, Sands G, Gerneke D, Taberner A, Dollie Q, LeGrice I, Loiselle D (2009) Trabeculae carneae as models of the ventricular walls: implications for the delivery of oxygen. J Gen Physiol 134:339–350

    Article  PubMed  Google Scholar 

  28. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  29. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle [Review] [521 refs]. Physiol Rev 80:853–924

    PubMed  CAS  Google Scholar 

  30. Granzier HL, labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295

    Article  PubMed  CAS  Google Scholar 

  31. Guo JQ, Duff HJ (2006) Calmodulin kinase II accelerates L-type Ca2+ current recovery from inactivation and compensates for the direct inhibitory effect of [Ca2+], in rat ventricular myocytes. J Physiol Lond 574:509–518

    Article  PubMed  CAS  Google Scholar 

  32. Hanley PJ, Young AA, LeGrice IJ, Edgar SG, Loiselle DS (1999) 3-Dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J Physiol 517:831–837

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi T, Martone ME, Yu ZY, Thor A, Doi M, Holst MJ, Ellisman MH, Hoshijima M (2009) Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci 122:1005–1013

    Article  PubMed  CAS  Google Scholar 

  34. Hibberd MG, Jewell BR (1982) Calcium- and length-dependent force production in rat ventricular muscle. J Physiol 329:527–540

    PubMed  CAS  Google Scholar 

  35. Hilge M, Aelen J, Perrakis A, Vuister GW (2007) Structural basis for Ca2+ regulation in the Na+/Ca2+ exchanger. Ann NY Acad Sci 1099:7–15

    Article  PubMed  CAS  Google Scholar 

  36. Hilge M, Aelen J, Foarce A, Perrakis A, Vuister GW (2009) Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc Natl Acad Sci USA 106:14333–14338

    Article  PubMed  CAS  Google Scholar 

  37. Housmans PR, Lee NKM, Blinks JR (1983) Active shortening retards the decline of the intracellular calcium transient in mammalian heart muscle. Science 221:159–161

    Article  PubMed  CAS  Google Scholar 

  38. Hunter PJ, Smaill BH (1988) The analysis of cardiac function: a continuum approach. Prog Biophys Mol Biol 52:101–164

    Article  PubMed  CAS  Google Scholar 

  39. Hunter PJ, McCulloch AD, ter Keurs HEDJ (1998) Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 69(2–3):289–331

    Article  PubMed  CAS  Google Scholar 

  40. Janssen PAJ, de Tombe PP (1997) Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. The American Physiological Society 272(4):H1892–H1897

    CAS  Google Scholar 

  41. Janssen PM, Hunter WC (1995) Force, not sarcomere length, correlates with prolongation of isosarcometric contraction. Am J Physiol 269:H676–H685

    PubMed  CAS  Google Scholar 

  42. Jayasinghe ID, Cannell MB, Soeller C (2009) Organization of ryanodine receptors, transverse tubules, and sodium-calcium exchanger in rat myocytes. Biophys J 97:2664–2673

    Article  PubMed  CAS  Google Scholar 

  43. Jayasinghe ID, Crossman DJ, Soeller C, Cannell MB (2010) A new twist in cardiac muscle: dislocated and helicoid arrangements of myofibrillar z-disks in mammalian ventricular myocytes. J Mol Cell Cardiol 48:964–971

    Article  PubMed  CAS  Google Scholar 

  44. Jiang Y, Patterson MF, Morgan DL, Julian FJ (1998) Basis for late rise in fura 2 R signal reporting [Ca2+]i during relaxation in intact rat ventricular trabeculae. Am J Physiol 274:C1273–C1282

    PubMed  CAS  Google Scholar 

  45. Kentish JC, ter Keurs HEDJ, Ricciardi L, Bucx JJJ, Noble MIM (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Circ Res 58:755–768

    PubMed  CAS  Google Scholar 

  46. Kobayashi T, Jin L, de Tombe PP (2008) Cardiac thin filament regulation. Pflügers Arch Eur J Physiol 457:37–46

    Article  CAS  Google Scholar 

  47. Konhilas JP, Irving TC, de Tombe PP (2002) Length-dependent activation in three striated muscle types of the rat. J Physiol 544:225–236

    Article  PubMed  CAS  Google Scholar 

  48. Kurihara S, Komukai K (1995) Tension-dependent changes of the intracellular Ca2+ transients in ferret ventricular muscles. J Physiol 489:617–625

    PubMed  CAS  Google Scholar 

  49. Maier LS, Bers DM (2002) Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J Mol Cell Cardiol 34:919–939

    Article  PubMed  CAS  Google Scholar 

  50. Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci USA 99:4073–4078

    Article  PubMed  CAS  Google Scholar 

  51. Maio A, Karko K, Snopko RM, Mejia-Alvarez R, Franzini-Armstrong C (2007) T-tubule formation in cardiacmyocytes: two possible mechanisms? J Muscle Res Cell Motil 28:231–241

    Article  PubMed  Google Scholar 

  52. Neco P, Rose B, Huynh N, Zhang R, Bridge JH, Philipson KD, Goldhaber JI (2010) Sodium-calcium exchange is essential for effective triggering of calcium release in mouse heart. Biophys J 99:755–764

    Article  PubMed  CAS  Google Scholar 

  53. Niederer SA, ter Keurs HEDJ, Smith NP (2009) Modelling and measuring electromechanical coupling in the rat heart. Exp Physiol 94:529–540

    Article  PubMed  CAS  Google Scholar 

  54. Obayashi M, Xiao BL, Stuyvers BD, Davidoff AW, Mei J, Chen SRW, ter Keurs HEDJ (2006) Spontaneous diastolic contractions and phosphorylation of the cardiac ryanodine receptor at serine-2808 in congestive heart failure in rat. Cardiovasc Res 69:140–151

    Article  PubMed  CAS  Google Scholar 

  55. Orchard CH, Pasek M, Brette F (2009) The role of mammalian cardiac t-tubules in excitation-contraction coupling: experimental and computational approaches. Exp Physiol 94:509–519

    Article  PubMed  CAS  Google Scholar 

  56. Ottolia M, Nicoll DA, Philipson KD (2009) Roles of two Ca2+−binding domains in regulation of the cardiac Na+−Ca2+ exchanger. J Biol Chem 284:32735–32741

    Article  PubMed  CAS  Google Scholar 

  57. Pasek M, Simurda J, Christe G, Orchard CH (2008) Modelling the cardiac transverse-axial tubular system. Prog Biophys Mol Biol 96:226–243

    Article  PubMed  CAS  Google Scholar 

  58. Pasek M, Brette F, Nelson A, Pearce C, Qaiser A, Christe G, Orchard CH (2008) Quantification of t-tubule area and protein distribution in rat cardiac ventricular myocytes. Prog Biophys Mol Biol 96:244–257

    Article  PubMed  CAS  Google Scholar 

  59. Polakova E, Zahradnikova A Jr, Pavelkova J, Zahradnik I, Zahradnikova A (2008) Local calcium release activation by DHPR calcium channel openings in rat cardiac myocytes. J Physiol 586:3839–3854

    Article  PubMed  CAS  Google Scholar 

  60. Renken C, Hsieh CE, Marko M, Rath B, Leith A, Wagenknecht T, Frank J, Mannella CA (2009) Structure of frozen-hydrated triad junctions: a case study in motif searching inside tomograms. J Struct Biol 165:53–63

    Article  PubMed  CAS  Google Scholar 

  61. Rodriguez EK, Hunter WC, Royce MJ, Leppo MK, Douglas AS, Weisman HF (1992) A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts. Am J Physiol 263:H293–H306

    PubMed  CAS  Google Scholar 

  62. Soeller C, Crossman D, Gilbert R, Cannell MB (2007) Analysis of ryanodine receptor clusters in rat and human cardiac myocytes. Proc Natl Acad Sci USA 104:14958–14963

    Article  PubMed  CAS  Google Scholar 

  63. Soeller C, Jayasinghe ID, Li P, Holden AV, Cannell MB (2009) Three-dimensional high-resolution imaging of cardiac proteins to construct models of intracellular Ca2+ signalling in rat ventricular myocytes. Exp Physiol 94:496–508

    Article  PubMed  CAS  Google Scholar 

  64. Solaro RJ, Wilse RM, Shiner JS, Briggs FN (1974) Calcium requirements for cardiac myofibrillar activation. Circ Res 34:525–530

    PubMed  CAS  Google Scholar 

  65. Stehle R, Iorga B (2010) Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation. J Mol Cell Cardiol 48:843–850

    Article  PubMed  CAS  Google Scholar 

  66. Stelzer JE, Larsson L, Fitzsimons DP, Moss RL (2006) Activation dependence of stretch activation in mouse skinned myocardium: implications for ventricular function. J Gen Physiol 127:95–107

    Article  PubMed  CAS  Google Scholar 

  67. Stern MD (1992) Theory of excitation-contraction coupling in cardiac muscle. Biophys J 63:497–517

    Article  PubMed  CAS  Google Scholar 

  68. Stuyvers BD, Miura M, ter Keurs HE (1997) Dynamics of viscoelastic properties of rat cardiac sarcomeres during the diastolic interval: involvement of Ca2+. J Physiol 502:661–677

    Article  PubMed  CAS  Google Scholar 

  69. Stuyvers BD, Dun W, Matkovich S, Sorrentino V, Boyden PA, ter Keurs HE (2005) Ca2+ sparks and waves in canine purkinje cells: a triple layered system of Ca2+ activation. Circ Res 97:35–43

    Article  PubMed  CAS  Google Scholar 

  70. Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35:117–126

    PubMed  CAS  Google Scholar 

  71. Suga H, Yamada O, Goto Y, Igarashi Y (1986) Peak isovolumic pressure-volume relation of puppy left ventricle. Am J Physiol 250:167–172

    Google Scholar 

  72. Tadross MR, Ben Johny M, Yue DT (2010) Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels. J Gen Physiol 135:197–215

    Article  PubMed  CAS  Google Scholar 

  73. ter Keurs HEDJ, Boyden PA (2007) Calcium and arrhythmogenesis. Physiol Rev 87:457–506

    Article  PubMed  Google Scholar 

  74. ter Keurs HEDJ, Mulder BJM (1984) Propagation of aftercontractions in cardiac muscle of rat. J Physiol 353:59P

    Google Scholar 

  75. ter Keurs HEDJ, Rijnsburger WH, van Heuningen R, Nagelsmit MJ (1980) tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res 46:703–714

    PubMed  Google Scholar 

  76. ter Keurs HEDJ, Wakayama Y, Miura M, Shinozaki T, Stuyvers BD, Boyden PA, Landesberg A (2006) Arrhythmogenic Ca2+ release from cardiac myofilaments. Prog Biophys Mol Biol 90:151–171

    Article  PubMed  Google Scholar 

  77. ter Keurs HEDJ, Shinozaki T, Zhang YM, Zhang ML, Wakayama Y, Sugai Y, Kagaya Y, Miura M, Boyden PA, Stuyvers BDM, Landesberg A (2008) Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias. Prog Biophys Mol Biol 97:312–331

    Article  PubMed  Google Scholar 

  78. Wakayama Y, Miura M, Stuyvers BD, Boyden PA, ter Keurs HEDJ (2005) Spatial nonuniformity of excitation-contraction coupling causes arrhythmogenic Ca2+ waves in rat cardiac muscle. Circ Res 96:1266–1273

    Article  PubMed  CAS  Google Scholar 

  79. Wang SQ, Song LS, Lakatta EG, Cheng HP (2001) Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410:592–596

    Article  PubMed  CAS  Google Scholar 

  80. Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K, Weiss RM, Anderson ME, Cheng H, Song LS (2010) T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 107:520–531

    Article  PubMed  CAS  Google Scholar 

  81. Backx PH, de Tombe PP, Van Deen JH, Mulder BJ, ter Keurs HE (1989) A model of propagating calcium-induced calcium release mediated by calcium diffusion. J Gen Physiol 93:963–977

    Article  PubMed  CAS  Google Scholar 

  82. Boyden PA, ter Keurs HEDJ (2001) Reverse excitation contract coupling: Ca2+ ions as initiators of arrhythmias. J Cardiovasc Electrophysiol 12:382–385

    Article  PubMed  CAS  Google Scholar 

  83. Daniels MCG, Fedida D, Lamont C, ter Keurs HEDJ (1991) Role of the sarcolemma in triggered propagated contractions in rat cardiac trabeculae. Circ Res 68:1408–1421

    PubMed  CAS  Google Scholar 

  84. Daniels MC, Kieser T, ter Keurs HE (1993) Triggered propagated contractions in human atrial trabeculae. Cardiovasc Res 27:1831–1835

    Article  PubMed  CAS  Google Scholar 

  85. Janssen PML (2010) Myocardial contraction-relaxation coupling. Am J Physiol Heart Circ Physiol 299:H1741–H1749

    Article  PubMed  CAS  Google Scholar 

  86. Jiang DW, Wang RW, Xiao BL, Kong HH, Hunt DJ, Choi P, Zhang L, Chen SRW (2005) Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. Circ Res 97:1173–1181

    Article  PubMed  CAS  Google Scholar 

  87. Kass RS, Lederer WJ, Tsien RW, Weingart R (1978) Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac purkinje fibres. J Physiol 281:187–208

    PubMed  CAS  Google Scholar 

  88. Lamont C, Luther PW, Balke CW, Wier GW (1998) Intercellular Ca2+ waves in rat heart muscle. J Physiol 512:669–676

    Article  PubMed  CAS  Google Scholar 

  89. Miura M, Boyden PA, ter Keurs HEDJ (1999) Ca2+ waves during triggered propagated contractions in intact trabeculae - determinants of the velocity of propagation. Circ Res 84:1459–1468

    PubMed  CAS  Google Scholar 

  90. Miura M, Wakayama Y, Endoh H, Nakano M, Sugai Y, Hirose M, ter Keurs HEDJ, Shimokawa H (2008) Spatial non-uniformity of excitation-contraction coupling can enhance arrhythmogenic-delayed afterdepolarizations in rat cardiac muscle. Cardiovasc Res 80:55–61

    Article  PubMed  CAS  Google Scholar 

  91. Mulder BJM, de Tombe PP, ter Keurs HEDJ (1989) Spontaneous and propagated contractions in rat cardiac trabeculae. J Gen Physiol 93:943–961

    Article  PubMed  CAS  Google Scholar 

  92. Solaro RJ, van der Velden J (2010) Why does troponin I have so many phosphorylation sites? Fact and fancy. J Mol Cell Cardiol 48:810–816

    Article  PubMed  CAS  Google Scholar 

  93. Solaro RJ, Sheehan KA, Lei M, Ke YB (2010) The curious role of sarcomeric proteins in control of diverse processes in cardiac myocytes. J Gen Physiol 136:13–19

    Article  PubMed  CAS  Google Scholar 

  94. Sugai Y, Miura M, Hirose M, Wakayama Y, Endoh H, Nishio T, Watanabe J, ter Keurs HEDJ, Shirato K, Shimokawa H (2009) Contribution of Na+/Ca2+ exchange current to the formation of delayed afterdepolarizations in intact rat ventricular muscle. J Cardiovasc Pharmacol 53:517–522

    Article  PubMed  CAS  Google Scholar 

  95. ter Keurs HEDJ (1993) Regulation of cardiac contraction in the normal and failing heart: cellular aspects. Can J Cardiol 9:11F

    Google Scholar 

  96. ter Keurs HEDJ, Backx PHM, de Tombe PP, Mulder BJ (1988) Aftercontractions and excitation-contraction coupling in rat cardiac muscle. Can J Physiol Pharmacol 66:1239–1245

    Article  PubMed  Google Scholar 

  97. ter Keurs HEDJ, Zhang YM, Miura M (1998) Damage induced arrhythmias: reversal of excitation-contraction coupling. Cardiovasc Res 40:444–455

    Article  PubMed  Google Scholar 

  98. Urata H, Boehm KD, Philip A, Kinoshita A, Gabrovsek J, Bumpus FM, Husain A (1993) Cellular localization and regional distribution of an angiotensin II-forming chymase in the heart. J Clin Invest 91:1269–1281

    Article  PubMed  CAS  Google Scholar 

  99. van Heuningen R, Rijnsburger WH, ter Keurs HEDJ (1982) sarcomere length control in striated muscle. Am J Physiol 242:H411–H420

    PubMed  Google Scholar 

  100. Wakayama Y, Sugai Y, Kagaya Y, Watanabe J, ter Keurs HEDJ (2001) Stretch and quick release of cardiac trabeculae accelerates Ca2+ waves and triggered propagated contractions. Am J Physiol Circ Physio 281:H2133–H2142

    CAS  Google Scholar 

  101. Zhang Y, ter Keurs HEDJ (1996) Effects of gadolinium on twitch force and triggered propagated contractions in rat cardiac trabeculae. Cardiovasc Res 32:180–188

    PubMed  CAS  Google Scholar 

  102. Zhang Y, Miura M, ter Keurs HEDJ (1996) Triggered propagated contractions in rat cardiac trabeculae; inhibition by octanol and heptanol. Circ Res 79:1077–1085

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants HL-58860-O6A2 and HL-66140 from the National Heart and Lung Institute of the NIH, by the Canadian Institutes for Health Research and the Heart and Stroke Foundation of Alberta the North West Territories and Nunavut. H.E.D.J. ter Keurs is Senior Investigator of the Alberta Heritage Foundation for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk E. D. J. ter Keurs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ter Keurs, H.E.D.J. Electromechanical coupling in the cardiac myocyte; stretch-arrhythmia feedback. Pflugers Arch - Eur J Physiol 462, 165–175 (2011). https://doi.org/10.1007/s00424-011-0944-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0944-3

Keywords

Navigation