Skip to main content

Advertisement

Log in

Na+,HCO3 -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Metabolic and biochemical changes during breast carcinogenesis enhance cellular acid production. Extrusion of the acid load from the cancer cells raises intracellular pH, while it decreases extracellular pH creating an inverted pH gradient across the plasma membrane compared to normal cells and promoting cancer cell metabolism, proliferation, migration, and invasion. We investigated the effects of breast carcinogenesis on the mechanisms of cellular pH control using multicellular epithelial organoids freshly isolated from human primary breast carcinomas and matched normal breast tissue. Intracellular pH was measured by fluorescence microscopy, while protein expression was investigated by immunofluorescence imaging and immunoblotting. We found that cellular net acid extrusion increased during human breast carcinogenesis due to enhanced Na+,HCO3 -cotransport, which created an alkaline shift (~0.3 units of magnitude) in steady-state intracellular pH of human primary breast carcinomas compared to normal breast tissue. Na+/H+-exchange activity and steady-state intracellular pH in the absence of CO2/HCO3 were practically unaffected by breast carcinogenesis. These effects were evident under both acidic (pH 6.8, representative of the tumor microenvironment) and physiological (pH 7.4) extracellular conditions. Protein expression of the Na+,HCO3 -cotransporter NBCn1 (SLC4A7), which has been linked to breast cancer susceptibility in multiple genome-wide association studies, was twofold higher in human breast carcinomas compared to matched normal breast tissue. Protein expression of the Na+/H+-exchanger NHE1 (SLC9A1) was markedly less affected. We propose that upregulated NBCn1 during human breast carcinogenesis contributes to the characteristic acid distribution within human breast carcinomas and thereby plays a pathophysiological role for breast cancer development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian M, Pooley KA, Luben R, Eccles D et al (2009) Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41:585–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Aronson PS, Suhm MA, Nee J (1983) Interaction of external H+ with the Na+-H+ exchanger in renal microvillus membrane vesicles. J Biol Chem 258:6767–6771

    CAS  PubMed  Google Scholar 

  3. Boedtkjer E, Praetorius J, Aalkjaer C (2006) NBCn1 (slc4a7) mediates the Na+-dependent bicarbonate transport important for regulation of intracellular pH in mouse vascular smooth muscle cells. Circ Res 98:515–523

    Article  CAS  PubMed  Google Scholar 

  4. Boedtkjer E, Praetorius J, Fuchtbauer EM, Aalkjaer C (2008) Antibody-independent localization of the electroneutral Na+-HCO3 cotransporter NBCn1 (slc4a7) in mice. Am J Physiol Cell Physiol 294:C591–C603

    Article  CAS  PubMed  Google Scholar 

  5. Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Füchtbauer AC, Simonsen U, Fuchtbauer EM, Aalkjaer C (2011) Disruption of Na+,HCO3 -cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca2+-sensitivity and hypertension development in mice. Circulation 124:1819–1829

    Article  CAS  PubMed  Google Scholar 

  6. Boedtkjer E, Bunch L, Pedersen SF (2012) Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: similarities, differences and implications for cancer therapy. Curr Pharm Des 18:1345–1371

    Article  CAS  PubMed  Google Scholar 

  7. Boedtkjer E, Damkier HH, Aalkjaer C (2012) NHE1 knockout reduces blood pressure and arterial media/lumen ratio with no effect on resting pHi in the vascular wall. J Physiol 590:1895–1906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Boedtkjer E, Moreira JM, Mele M, Vahl P, Wielenga VT, Christiansen PM, Jensen VE, Pedersen SF, Aalkjaer C (2013) Contribution of Na+,HCO3 -cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer 132:1288–1299

    Article  CAS  PubMed  Google Scholar 

  9. Boron WF, De Weer P (1976) Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol 67:91–112

    Article  CAS  PubMed  Google Scholar 

  10. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  CAS  PubMed  Google Scholar 

  11. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Choong LY, Lin Q, Philp R, Wong CH, Ang BK, Tan YL, Loh MC, Hew CL, Shah N, Druker BJ et al (2007) Differential expression of novel tyrosine kinase substrates during breast cancer development. Mol Cell Proteomics 6:2072–2087

    Article  CAS  PubMed  Google Scholar 

  13. Ch’en FF, Villafuerte FC, Swietach P, Cobden PM, Vaughan-Jones RD (2008) S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart. Br J Pharmacol 153:972–982

    Article  PubMed Central  PubMed  Google Scholar 

  14. Chiche J, Le FY, Vilmen C, Frassineti F, Daniel L, Halestrap AP, Cozzone PJ, Pouyssegur J, Lutz NW (2012) In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer 130:1511–1520

    Article  CAS  PubMed  Google Scholar 

  15. Damkier HH, Nielsen S, Praetorius J (2006) An anti-NH2-terminal antibody localizes NBCn1 to heart endothelia and skeletal and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 290:H172–H180

    Article  CAS  PubMed  Google Scholar 

  16. De Milito A, Marino ML, Fais S (2012) A rationale for the use of proton pump inhibitors as antineoplastic agents. Curr Pharm Des 18:1395–1406

    Article  PubMed  Google Scholar 

  17. Gorbatenko A, Olesen CW, Boedtkjer E, Pedersen SF (2014) Regulation and roles of bicarbonate transporters in cancer. Front Physiol 5:130

    Article  PubMed Central  PubMed  Google Scholar 

  18. Han W, Woo JH, Yu JH, Lee MJ, Moon HG, Kang D, Noh DY (2011) Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiol Biomarkers Prev 20:793–798

    Article  CAS  PubMed  Google Scholar 

  19. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  20. Hulikova A, Vaughan-Jones RD, Swietach P (2011) Dual role of CO2/HCO3 buffer in the regulation of intracellular pH of three-dimensional tumor growths. J Biol Chem 286:13815–13826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Johannessen TC, Wagner M, Straume O, Bjerkvig R, Eikesdal HP (2013) Tumor vasculature: the Achilles’ heel of cancer? Expert Opin Ther Targets 17:7–20

    Article  CAS  PubMed  Google Scholar 

  22. Larsen AM, Krogsgaard-Larsen N, Lauritzen G, Olesen CW, Honoré Hansen S, Boedtkjer E, Pedersen SF, Bunch L (2012) Gram-scale solution-phase synthesis of selective sodium bicarbonate co-transport inhibitor S0859: in vitro efficacy studies in breast cancer cells. ChemMedChem 7:1808–1814

    Article  CAS  PubMed  Google Scholar 

  23. Lauritzen G, Jensen MB, Boedtkjer E, Dybboe R, Aalkjaer C, Nylandsted J, Pedersen SF (2010) NBCn1 and NHE1 expression and activity in δNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance. Exp Cell Res 316:2538–2553

    Article  CAS  PubMed  Google Scholar 

  24. Lauritzen G, Stock CM, Lemaire J, Lund SF, Jensen MF, Damsgaard B, Petersen KS, Wiwel M, Ronnov-Jessen L, Schwab A, Pedersen SF (2012) The Na+/H+ exchanger NHE1, but not the Na+,HCO3 cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Lett 317:172–183

    Article  CAS  PubMed  Google Scholar 

  25. Long J, Shu XO, Cai Q, Gao YT, Zheng Y, Li G, Li C, Gu K, Wen W, Xiang YB, Lu W et al (2010) Evaluation of breast cancer susceptibility loci in Chinese women. Cancer Epidemiol Biomarkers Prev 19:2357–2365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–777

    Article  CAS  PubMed  Google Scholar 

  27. Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447:549–565

    Article  CAS  PubMed  Google Scholar 

  28. Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308

    Article  CAS  PubMed  Google Scholar 

  30. Parks SK, Chiche J, Pouyssegur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13:611–623

    Article  CAS  PubMed  Google Scholar 

  31. Pedersen SF (2006) The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death. Pflugers Arch 452:249–259

    Article  CAS  PubMed  Google Scholar 

  32. Petersen OW, Hoyer PE, Hilgers J, Briand P, Van Deurs B (1985) Characterization of epithelial cell islets in primary monolayer cultures of human breast carcinomas by the tetrazolium reaction for glucose 6-phosphate dehydrogenase. Virchows Arch B Cell Pathol Incl Mol Pathol 50:27–42

  33. Ro HA, Carson JH (2004) pH microdomains in oligodendrocytes. J Biol Chem 279:37115–37123

    Article  CAS  PubMed  Google Scholar 

  34. Rotin D, Steele-Norwood D, Grinstein S, Tannock I (1989) Requirement of the Na+/H+ exchanger for tumor growth. Cancer Res 49:205–211

    CAS  PubMed  Google Scholar 

  35. Schwab A, Fabian A, Hanley PJ, Stock C (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92:1865–1913

    Article  CAS  PubMed  Google Scholar 

  36. Sennoune SR, Bakunts K, Martinez GM, Chua-Tuan JL, Kebir Y, Attaya MN, Martinez-Zaguilan R (2004) Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 286:C1443–C1452

    Article  CAS  PubMed  Google Scholar 

  37. Silva AS, Yunes JA, Gillies RJ, Gatenby RA (2009) The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Res 69:2677–2684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Stock C, Schwab A (2006) Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol (Oxford) 187:149–157

    Article  CAS  Google Scholar 

  39. Sueta A, Ito H, Kawase T, Hirose K, Hosono S, Yatabe Y, Tajima K, Tanaka H, Iwata H, Iwase H, Matsuo K (2012) A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population. Breast Cancer Res Treat 132:711–721

    Article  CAS  PubMed  Google Scholar 

  40. Trivedi B, Danforth WH (1966) Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 241:4110–4112

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ole William Petersen, University of Copenhagen, for advice on preparing epithelial organoids. We are grateful to Dr. Christian Aalkjaer, Aarhus University, and Dr. Stine F. Pedersen, University of Copenhagen, for fruitful discussions. Dr. Jeppe Praetorius, Aarhus University, is thanked for generously providing the NBCn1 antibody. This work was supported by the Danish Council for Independent Research (10-094816 to E.B.), the Novo Nordisk Foundation (to E.B.), and the Danish Cancer Society (R72-A4273-13-S2 to E.B.).

Ethical standards

The experiments in this article comply with the current Danish laws.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebbe Boedtkjer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Mele, M., Vahl, P. et al. Na+,HCO3 -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane. Pflugers Arch - Eur J Physiol 467, 367–377 (2015). https://doi.org/10.1007/s00424-014-1524-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1524-0

Keywords

Navigation