Skip to main content

Advertisement

Log in

Toll-like receptor 2 mediates vascular contraction and activates RhoA signaling in vascular smooth muscle cells from STZ-induced type 1 diabetic rats

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Increased vascular smooth muscle cell (VSMC) contraction is an early and critical contributor to the pathogenesis of vascular dysfunction in diabetes; however, knowledge regarding the underlying mechanisms is scarce. Toll-like receptor 2 (TLR2), a well-known component of the innate immunity, is expressed in VSMC and recently has been identified to be systemically activated in diabetes. Whether TLR2 is locally activated in the diabetic blood vessels and have effect on contraction is not known. In the current study, we examined the role of TLR2 in increased vascular contraction in diabetes. Utilizing rat model of type 1 diabetes (induced by streptozotocin (STZ)), we demonstrated that aortas from STZ-diabetic rats exhibit increased expression of TLR2 and its adaptor protein, myeloid differentiation primary response 88 (MyD88), as well as enhanced protein–protein interaction between TLR2 and MyD88, suggesting a TLR2 signaling activation. Blockade of TLR2 in intact aortas using anti-TLR2 antibody attenuated increased vascular contraction in STZ-diabetic rat as assessed by wire myograph. Activation of TLR2 by specific ligand in primary aortic VSMC cultures triggered activation of RhoA which was exacerbated in cells from STZ-diabetic rats than control rats. Activation of RhoA was accompanied by phosphorylation and therefore activation of its downstream targets myosin phosphatase target subunit I and myosin light chain (markers of VSMC contraction). Taken together, these results provide evidence for the role of TLR2 in increased contraction in diabetic blood vessels that involves RhoA signaling. Thus, targeting vascular TLR2 offers a promising drug target to treat vascular dysfunction in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 1:533–540. doi:10.1038/82797

    Article  CAS  PubMed  Google Scholar 

  2. Arita R, Hata Y, Nakao S, Kita T, Miura M, Kawahara S, Zandi S, Almulki L, Tayyari F, Shimokawa H, Hafezi-Moghadam A, Ishibashi T (2009) Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes 58:215–226. doi:10.2337/db08-0762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC, Fortes ZB, Webb RC, Carvalho MH (2012) Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond) 122:535–543. doi:10.1042/CS20110523

    Article  CAS  Google Scholar 

  4. Budzyn K, Marley PD, Sobey CG (2006) Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci 27:97–104. doi:10.1016/j.tips.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  5. Cameron NE, Cotter MA (1992) Impaired contraction and relaxation in aorta from streptozotocin-diabetic rats: role of polyol pathway. Diabetologia 35:1011–1019

    Article  CAS  PubMed  Google Scholar 

  6. Carrillo-Sepulveda MA, Barreto-Chaves ML (2010) Phenotypic modulation of cultured vascular smooth muscle cells: a functional analysis focusing on MLC and ERK1/2 phosphorylation. Mol Cell Biochem 341:279–289. doi:10.1007/s11010-010-0459-9

    Article  CAS  PubMed  Google Scholar 

  7. Carrillo-Sepulveda MA, Ceravolo GS, Furstenau CR, Monteiro Pde S, Bruno-Fortes Z, Carvalho MH, Laurindo FR, Tostes RC, Webb RC, Barreto-Chaves ML (2013) Emerging role of angiotensin type 2 receptor (AT2R)/Akt/NO pathway in vascular smooth muscle cell in the hyperthyroidism. PLoS One 8:e61982. doi:10.1371/journal.pone.0061982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen LY, Zuraw BL, Liu FT, Huang S, Pan ZK (2002) IL-1 receptor-associated kinase and low molecular weight GTPase RhoA signal molecules are required for bacterial lipopolysaccharide-induced cytokine gene transcription. J Immunol 169:3934–3939

    Article  CAS  PubMed  Google Scholar 

  9. Cicek FA, Kandilci HB, Turan B (2013) Role of ROCK upregulation in endothelial and smooth muscle vascular functions in diabetic rat aorta. Cardiovasc Diabetol 12:51. doi:10.1186/1475-2840-12-51

    Article  PubMed Central  PubMed  Google Scholar 

  10. Creager MA, Luscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108:1527–1532. doi:10.1161/01.CIR.0000091257.27563.32

    Article  PubMed  Google Scholar 

  11. Dasu MR, Ramirez S, Isseroff RR (2012) Toll-like receptors and diabetes: a therapeutic perspective. Clin Sci (Lond) 122:203–214. doi:10.1042/CS20110357

    Article  CAS  Google Scholar 

  12. Dasu MR, Thangappan RK, Bourgette A, DiPietro LA, Isseroff R, Jialal I (2010) TLR2 expression and signaling-dependent inflammation impair wound healing in diabetic mice. Lab Invest 90:1628–1636. doi:10.1038/labinvest.2010.158

    Article  CAS  PubMed  Google Scholar 

  13. Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I (2008) Increased Toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 93:578–583. doi:10.1210/jc.2007-2185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Devaraj S, Jialal I, Yun JM, Bremer A (2011) Demonstration of increased Toll-like receptor 2 and Toll-like receptor 4 expression in monocytes of type 1 diabetes mellitus patients with microvascular complications. Metabolism 60:256–259. doi:10.1016/j.metabol.2010.01.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Di Marco E, Gray SP, Jandeleit-Dahm K (2013) Diabetes alters activation and repression of pro- and anti-inflammatory signaling pathways in the vasculature. Front Endocrinol (Lausanne) 4:68. doi:10.3389/fendo.2013.00068

    Google Scholar 

  16. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ (2002) Expression of Toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105:1158–1161

    CAS  PubMed  Google Scholar 

  17. Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, Polentarutti N, Muzio M, Arditi M (2000) Bacterial lipopolysaccharide activates NF-kappaB through Toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275:11058–11063

    Article  CAS  PubMed  Google Scholar 

  18. Feng L, Matsumoto C, Schwartz A, Schmidt AM, Stern DM, Pile-Spellman J (2005) Chronic vascular inflammation in patients with type 2 diabetes: endothelial biopsy and RT-PCR analysis. Diabetes Care 28:379–384

    Article  CAS  PubMed  Google Scholar 

  19. Flo TH, Halaas O, Torp S, Ryan L, Lien E, Dybdahl B, Sundan A, Espevik T (2001) Differential expression of Toll-like receptor 2 in human cells. J Leukoc Biol 69:474–481

    CAS  PubMed  Google Scholar 

  20. Gao X, Zhang H, Schmidt AM, Zhang C (2008) AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 295:H491–H498. doi:10.1152/ajpheart.00464.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Guo Z, Su W, Allen S, Pang H, Daugherty A, Smart E, Gong MC (2005) COX-2 up-regulation and vascular smooth muscle contractile hyperreactivity in spontaneous diabetic db/db mice. Cardiovasc Res 67:723–735. doi:10.1016/j.cardiores.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  22. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM (2011) Inflammation, immunity, and hypertension. Hypertension 57:132–140. doi:10.1161/HYPERTENSIONAHA.110.163576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jaedicke KM, Roythorne A, Padget K, Todryk S, Preshaw PM, Taylor JJ (2013) Leptin up-regulates TLR2 in human monocytes. J Leukoc Biol 93:561–571. doi:10.1189/jlb.1211606

    Article  CAS  PubMed  Google Scholar 

  24. Jordao MT, Ladd FV, Coppi AA, Chopard RP, Michelini LC (2011) Exercise training restores hypertension-induced changes in the elastic tissue of the thoracic aorta. J Vasc Res 48:513–524. doi:10.1159/000329590

    Article  CAS  PubMed  Google Scholar 

  25. Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13:460–469. doi:10.1016/j.molmed.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  26. Kim HS, Han MS, Chung KW, Kim S, Kim E, Kim MJ, Jang E, Lee HA, Youn J, Akira S, Lee MS (2007) Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. Immunity 27:321–333. doi:10.1016/j.immuni.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  27. Kizub IV, Pavlova OO, Johnson CD, Soloviev AI, Zholos AV (2010) Rho kinase and protein kinase C involvement in vascular smooth muscle myofilament calcium sensitization in arteries from diabetic rats. Br J Pharmacol 159:1724–1731. doi:10.1111/j.1476-5381.2010.00666.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lechleitner M, Koch T, Herold M, Dzien A, Hoppichler F (2000) Tumour necrosis factor-alpha plasma level in patients with type 1 diabetes mellitus and its association with glycaemic control and cardiovascular risk factors. J Intern Med 248:67–76

    Article  CAS  PubMed  Google Scholar 

  29. Lee GL, Chang YW, Wu JY, Wu ML, Wu KK, Yet SF, Kuo CC (2012) TLR 2 induces vascular smooth muscle cell migration through cAMP response element-binding protein-mediated interleukin-6 production. Arterioscler Thromb Vasc Biol 32:2751–2760. doi:10.1161/ATVBAHA.112.300302

    Article  CAS  PubMed  Google Scholar 

  30. Liou JY, Deng WG, Gilroy DW, Shyue SK, Wu KK (2001) Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts. J Biol Chem 276:34975–34982. doi:10.1074/jbc.M105946200

    Article  CAS  PubMed  Google Scholar 

  31. Makino N, Maeda T, Sugano M, Satoh S, Watanabe R, Abe N (2005) High serum TNF-alpha level in type 2 diabetic patients with microangiopathy is associated with eNOS down-regulation and apoptosis in endothelial cells. J Diabetes Complications 19:347–355. doi:10.1016/j.jdiacomp.2005.04.002

    Article  PubMed  Google Scholar 

  32. Manukyan M, Nalbant P, Luxen S, Hahn KM, Knaus UG (2009) RhoA GTPase activation by TLR2 and TLR3 ligands: connecting via Src to NF-kappa B. J Immunol 182:3522–3529. doi:10.4049/jimmunol.0802280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mirza S, Hossain M, Mathews C, Martinez P, Pino P, Gay JL, Rentfro A, McCormick JB, Fisher-Hoch SP (2012) Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine 57:136–142. doi:10.1016/j.cyto.2011.09.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mudaliar H, Pollock C, Komala MG, Chadban S, Wu H, Panchapakesan U (2013) The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am J Physiol Renal Physiol 305:F143–154. doi:10.1152/ajprenal.00398.2012

    Article  CAS  PubMed  Google Scholar 

  35. Navarro JF, Mora C (2005) Role of inflammation in diabetic complications. Nephrol Dial Transplant 20:2601–2604. doi:10.1093/ndt/gfi155

    Article  PubMed  Google Scholar 

  36. Nin JW, Ferreira I, Schalkwijk CG, Jorsal A, Prins MH, Parving HH, Tarnow L, Rossing P, Stehouwer CD (2012) Higher plasma high-mobility group box 1 levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12 year follow-up study. Diabetologia 55:2489–2493. doi:10.1007/s00125-012-2622-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nobe K, Sakai Y, Maruyama Y, Momose K (2002) Hyper-reactivity of diacylglycerol kinase is involved in the dysfunction of aortic smooth muscle contractility in streptozotocin-induced diabetic rats. Br J Pharmacol 136:441–451. doi:10.1038/sj.bjp.0704722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pannirselvam M, Wiehler WB, Anderson T, Triggle CR (2005) Enhanced vascular reactivity of small mesenteric arteries from diabetic mice is associated with enhanced oxidative stress and cyclooxygenase products. Br J Pharmacol 144:953–960. doi:10.1038/sj.bjp.0706121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Park SY, Lee SW, Lee WS, Rhim BY, Lee SJ, Kwon SM, Hong KW, Kim CD (2013) RhoA/ROCK-dependent pathway is required for TLR2-mediated IL-23 production in human synovial macrophages: suppression by cilostazol. Biochem Pharmacol 86:1320–1327. doi:10.1016/j.bcp.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  40. Qin YH, Dai SM, Tang GS, Zhang J, Ren D, Wang ZW, Shen Q (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J Immunol 183:6244–6250. doi:10.4049/jimmunol.0900390

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez WE, Tyagi N, Joshua IG, Passmore JC, Fleming JT, Falcone JC, Tyagi SC (2006) Pioglitazone mitigates renal glomerular vascular changes in high-fat, high-calorie-induced type 2 diabetes mellitus. Am J Physiol Renal Physiol 291:F694–F701. doi:10.1152/ajprenal.00398.2005

    Article  CAS  PubMed  Google Scholar 

  42. Salum E, Kampus P, Zilmer M, Eha J, Butlin M, Avolio AP, Podramagi T, Arend A, Aunapuu M, Kals J (2012) Effect of vitamin D on aortic remodeling in streptozotocin-induced diabetes. Cardiovasc Diabetol 11:58. doi:10.1186/1475-2840-11-58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Schoneveld AH, Oude Nijhuis MM, van Middelaar B, Laman JD, de Kleijn DP, Pasterkamp G (2005) Toll-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development. Cardiovasc Res 66:162–169. doi:10.1016/j.cardiores.2004.12.016

    Article  CAS  PubMed  Google Scholar 

  44. Shah DI, Singh M (2006) Effect of fasudil on macrovascular disorder-induced endothelial dysfunction. Can J Physiol Pharmacol 84:835–845. doi:10.1139/y06-036

    Article  CAS  PubMed  Google Scholar 

  45. Shi Y, Vanhoutte PM (2008) Oxidative stress and COX cause hyper-responsiveness in vascular smooth muscle of the femoral artery from diabetic rats. Br J Pharmacol 154:639–651. doi:10.1038/bjp.2008.110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Shibolet O, Giallourakis C, Rosenberg I, Mueller T, Xavier RJ, Podolsky DK (2007) AKAP13, a RhoA GTPase-specific guanine exchange factor, is a novel regulator of TLR2 signaling. J Biol Chem 282:35308–35317. doi:10.1074/jbc.M704426200

    Article  CAS  PubMed  Google Scholar 

  47. Syed MM, Phulwani NK, Kielian T (2007) Tumor necrosis factor-alpha (TNF-alpha) regulates Toll-like receptor 2 (TLR2) expression in microglia. J Neurochem 103:1461–1471. doi:10.1111/j.1471-4159.2007.04838.x

    Article  CAS  PubMed  Google Scholar 

  48. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546

    CAS  PubMed  Google Scholar 

  49. Teusch N, Lombardo E, Eddleston J, Knaus UG (2004) The low molecular weight GTPase RhoA and atypical protein kinase Czeta are required for TLR2-mediated gene transcription. J Immunol 173:507–514

    Article  CAS  PubMed  Google Scholar 

  50. Xie Z, Su W, Guo Z, Pang H, Post SR, Gong MC (2006) Up-regulation of CPI-17 phosphorylation in diabetic vasculature and high glucose cultured vascular smooth muscle cells. Cardiovasc Res 69:491–501. doi:10.1016/j.cardiores.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  51. Yang XQ, Wang YY, Chen AF (2008) Increased superoxide contributes to enhancement of vascular contraction in Ins2(Akita) diabetic mice, an autosomal dominant mutant model. Clin Exp Pharmacol Physiol 35:1097–1103

    Article  CAS  PubMed  Google Scholar 

  52. Yerneni KK, Bai W, Khan BV, Medford RM, Natarajan R (1999) Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 48:855–864

    Article  CAS  PubMed  Google Scholar 

  53. Zeidan A, Nordstrom I, Dreja K, Malmqvist U, Hellstrand P (2000) Stretch-dependent modulation of contractility and growth in smooth muscle of rat portal vein. Circ Res 87:228–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lynsey Ekema, MSMI, for assistance with the medical illustration to the figure of this manuscript. We also would like to thank Dr. Maria Tereza Jordao (University of Sao Paulo Brazil), Trevor Hardigan, and Kathryn Spitler (Georgia Regents University) for their assistance in this project, and Jennifer Thompson for editing introduction and discussion. Source of Funding: This work was supported through a research grant from the American Heart Association to M.A.C.S. (13POST14690026).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Alicia Carrillo-Sepulveda.

Additional information

This work was performed at Georgia Regents University

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, L., Carrillo-Sepulveda, M.A. Toll-like receptor 2 mediates vascular contraction and activates RhoA signaling in vascular smooth muscle cells from STZ-induced type 1 diabetic rats. Pflugers Arch - Eur J Physiol 467, 2361–2374 (2015). https://doi.org/10.1007/s00424-015-1688-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1688-2

Keywords

Navigation