Skip to main content
Log in

Glucose delays seed germination in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Here we report that glucose delays germination of Arabidopsis thaliana (L.) Heynh. seeds at concentrations below those known to inhibit early seedling development. This inhibition acts on embryo growth and is independent of hexokinase (HXK) function. Hormones and hormone inhibitors were applied to the germination media and several hormone biosynthesis and signalling mutants were tested on glucose media to investigate a possible role of abscisic acid (ABA), gibberellin and ethylene in the glucose-induced germination delay. Results indicate that the germination inhibition by glucose cannot be antagonized by ethylene or gibberellin and is independent of the HXK1/ABA/ABI4 signalling cascade. These findings suggest that there is a separate regulatory pathway independent of ABI2/ABI4/ABI5. Thus, in a relatively short time frame sugars utilize different signalling cascades to inhibit germination and post-germination growth, underlining the complexity of sugar responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3a,b
Fig. 4
Fig. 5a–d
Fig. 6a–f

Similar content being viewed by others

Abbreviations

ABA :

Abscisic acid

ABI :

ABA insensitive

ACC :

1-Aminocyclopropane-1-carboxylic acid

BR :

Brassinosteroid

CAB :

Chlorophyll a/b-binding protein

FUS3 :

Fusca3

GA :

Gibberellin

GA 3 :

Gibberellic acid

HXK :

Hexokinase

LEC1 :

Leafy cotyledon1

RBCS :

Ribulose-1,5-bisphosphate carboxylase small subunit

WT :

Wild type

References

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    CAS  PubMed  Google Scholar 

  • Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1116

    CAS  PubMed  Google Scholar 

  • Bentsink L, Koornneef M (2002) Seed dormancy and germination. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. http://www.aspb.org/publications/arabidopsis/, American Society of Plant Biologists, Rockville, MD. DOI 10.1199/tab.0050

  • Brocard-Gifford IM, Lynch TJ, Finkelstein RR (2003) Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 131:78–92

    Article  CAS  PubMed  Google Scholar 

  • Carles C, Bies-Etheve N, Aspart L, Leon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2003) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30:373–383

    Article  Google Scholar 

  • Cortes S, Gromova M, Evrard A, Roby C, Heyraud A, Rolin DB, Raymond P, Brouquisse RM (2003) In plants, 3-O-methylglucose is phosphorylated by hexokinase but not perceived as a sugar. Plant Physiol 131:824–837

    Article  CAS  PubMed  Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424

    CAS  PubMed  Google Scholar 

  • Finkelstein RR (1994) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5:765–771

    Article  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol 122:1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Garciarrubio A, Legaria JP, Covarrubias AA (1997) Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta 203:182–187

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 4:387–391

    CAS  PubMed  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    CAS  PubMed  Google Scholar 

  • Gibson SI (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol 124:1532–1539

    Article  CAS  PubMed  Google Scholar 

  • Gibson SI, Laby RJ, Kim D (2001) The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem Biophys Res Commun 280:196–203

    Article  CAS  PubMed  Google Scholar 

  • Grappin P, Bouinot D, Sotta B, Miginiac E, Jullien M (2000) Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210:279–285

    CAS  PubMed  Google Scholar 

  • Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J 23:577–585

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Olszewski NE (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5:887–896

    CAS  PubMed  Google Scholar 

  • Jullien M, Bouinot D, Ali-Rachedi S, Sotta B, Grappin P (2000) Abscisic acid control of seed dormancy expression in Nicotiana plumbaginifolia and Arabidopsis thaliana. In: Viemont J-D, Crabbe J (eds) Dormancy in plants from whole plant behaviour to cellular control. CABI, Wallingford, UK, pp 195–210

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Biol 47:509–540

    Article  CAS  Google Scholar 

  • Koornneef M, Karssen CM (1994) Seed dormancy and germination. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 313–334

  • Koornneef M, Jorna ML, Brinkhorst-Van der Swan DLC, Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61:385–393

    CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterisation of abscisic acid insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    CAS  Google Scholar 

  • Laby R, Kincaid M, Kim D, Gibson S (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23:587–596

    Article  CAS  PubMed  Google Scholar 

  • Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726

    CAS  PubMed  Google Scholar 

  • León P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  PubMed  Google Scholar 

  • Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol 128:472–481

    Article  CAS  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng W, Liu Y, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Murthy UMN, Kumar PP, Sun WQ (2003) Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. J Exp Bot 54:1057–1067

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj RH, Shipanova IN, Faust FM (1996) Protein cross-linking by the Maillard reaction. J Biol Chem 271:19338–19345

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, Kamiya Y, Naito S (2000) The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Dev Biol 220:412–423

    Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell [Suppl] 14:61–80

    Google Scholar 

  • Ooms JJJ, Léon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. Plant Physiol 102:1185–1191

    CAS  PubMed  Google Scholar 

  • Özcan S, Dover J, Rosenwald AG, Wolfl S, Johnston M (1996) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93:12428–12432

    Article  PubMed  Google Scholar 

  • Pego JV, Weisbeek PJ, Smeekens SCM (1999) Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol 119:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Perata P, Matsukura C, Vernieri P, Yamaguchi J (1997) Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9:2197–2208

    Article  CAS  PubMed  Google Scholar 

  • Price J, Li TC, Kang SG, Na JK, Yang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438

    Article  CAS  PubMed  Google Scholar 

  • Pritchard SL, Charlton WL, Baker A, Graham IA (2002) Germination and storage reserve mobilisation are regulated independently in Arabidopsis. Plant J 31:639–647

    Article  CAS  PubMed  Google Scholar 

  • Quesada V, Ponce MR, Micol JL (2000) Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154:421–436

    CAS  PubMed  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell [Suppl] 14:185–205

    Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139:1393–1409

    CAS  PubMed  Google Scholar 

  • Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433

    Article  CAS  PubMed  Google Scholar 

  • Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418

    CAS  PubMed  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Biol 51:49–81

    Article  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    CAS  PubMed  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769

    Article  CAS  PubMed  Google Scholar 

  • Swain SM, Tseng TS, Thornton TM, Gopalraj M, Olszewski NE (2002) SPINDLY is a nuclear-localized repressor of gibberellin signal transduction expressed throughout the plant. Plant Physiol 129:605–615

    Article  CAS  PubMed  Google Scholar 

  • Taylor AG, Min T-G, Paine DH (2000) Maillard reactions cause browning in bean seed coat during ageing: inhibition by aminoguanidine. In: Black M, Bradford KJ, Vazquez-Ramos J (eds) Seed biology: advances and applications. CABI, Wallingford, UK, pp 189–195

  • To J, Reiter WD, Gibson S (2002) Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars. BMC Plant Biol 2:4

    Article  PubMed  Google Scholar 

  • Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol 129:897–907

    Article  CAS  PubMed  Google Scholar 

  • Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell [Suppl] 14:131–151

    Google Scholar 

  • Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95:10294–10299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge B. Verhagen (Phytopathology, University of Utrecht), Dr. T. Peeters (Ecophysiology, University of Utrecht), Dr. J.L. Micol (Miguel Hernandez University, Alicante, Spain) and the Nottingham Arabidopsis Stock Centre (NASC) for providing seeds, Frits Kindt for help with photography and the Imageprocessing & Design department (Faculty of Biology, University of Utrecht) for help preparing the figures. This research was supported by the Earth and Life Sciences Foundation subsidized by The Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bas J. W. Dekkers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekkers, B.J.W., Schuurmans, J.A.M.J. & Smeekens, S.C.M. Glucose delays seed germination in Arabidopsis thaliana . Planta 218, 579–588 (2004). https://doi.org/10.1007/s00425-003-1154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1154-9

Keywords

Navigation