Skip to main content
Log in

Basis of selectivity of cyhalofop-butyl in Oryza sativa L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cyhalofop-butyl (CB), 2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propanoic acid, butyl ester (R), is an aryloxyphenoxypropionate (AOPP) herbicide for postemergence use in rice to control grasses, mainly Echinochloa spp. Similar to other AOPP and cyclohexanedione herbicides, the site of action of CB is acetyl-coenzyme A carboxylase (ACCase), an enzyme in fatty acid biosynthesis. The mechanisms involved in the selectivity of CB in rice (Oryza sativa L.)—absorption, translocation, metabolism, and ACCase susceptibility—were studied. Studies of in vitro inhibition of ACCase in E. oryzoides and O. sativa L. species discounted any differential active site sensitivity as the basis of tolerance to CB. The O. sativa L. cuticle was uniformly covered by waxes, with predominantly unshaped large waxes randomly distributed, obtaining absorption values of under 30%, 24 h after application (HAA). The E. oryzoides cuticle formed a non-uniform covered reticule, with less wax density and areas lacking in waxes reaching maximum values of absorption rising to 73%, 24 HAA. Translocation studies revealed no significant differences, either between species, or between times, remaining in the treated leaf. There was a good correlation between the rate of metabolism and plant tolerance. Plant metabolism studies demonstrated that tolerant rice inactivated the esterases producing a lack of functionality thus reducing the conversion of CB to cyhalofop acid, which is the active form of the herbicide. Moreover, it increased the metabolism of the herbicide forming non toxic metabolites much faster than E. oryzoides. It was concluded that the basis of rice tolerance to CB was a lack of esterase functionality, a reduced absorption through the cuticle and an increase in cyhalofop acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CB:

Cyhalofop-butyl

ACCase:

Acetyl coenzyme A carboxylase

SEM:

Scanning electron microscopy

CHD:

Cyclohexanedione

AOPP:

Aryloxyphenoxypropionate

ED:

Effective dose

EDTA:

Ethylenediaminetetraacetic acid

DTT:

Dithiothreitol

LSS:

Liquid scintillation spectrometry

References

  • Alban C, Baldet P, Douce R (1994) Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J 300:557–565

    PubMed  CAS  Google Scholar 

  • Ashton AR, Jenkins CLD, Whitfeld PR (1994) Molecular cloning of two different cDNAs for mayze acetyl-CoA carboxylase. Plant Mol Biol 24:35–49

    Article  PubMed  CAS  Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–262

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bradley KW, Wu J, Hatzios KK, Hagood ES (2001) The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a johnsongrass biotype. Weed Sci 49:477–484

    Article  CAS  Google Scholar 

  • Christopher JT, Holtum JAM (2000) Dicotyledons lacking the multisubunit form of acetyl coenzyme A carboxylase may be restricted to the family Geraniaceae. Aust J Plant Physiol 27:845–850

    CAS  Google Scholar 

  • Davies J, Caseley JC (1999) Herbicide safeners: a review. Pestic Sci 55:1043–1058

    Article  CAS  Google Scholar 

  • De Prado R, Franco AR (2004) Cross-resistance and herbicide metabolism in grass weeds in Europe: biochemical and biological aspects. Weed Sci 52:441–447

    Article  CAS  Google Scholar 

  • De Prado JL, Osuna MD, Shimabukuro RH, De Prado R (1998) Biochemical and physiological resistance mechanisms to diclofop-methyl in Lolium rigidum. Proc Crop Prot 63:681–689

    CAS  Google Scholar 

  • De Prado R, González-Gutierrez J, Menéndez J, Gasquez J, Gronwald JW (2000) Resistance to acetyl CoA carboxylase-inhibiting herbicides in Lolium multiflorum. Weed Sci 48:311–318

    Article  CAS  Google Scholar 

  • De Prado R, De Prado JL, Osuna MD, Taberner A, Heredia A (2001) Is diclofop-methyl resistance in Lolium rigidum associated with a lack of penetration? Proc Crop Prot Conf Weeds 8A:545–550

    Google Scholar 

  • De Prado JL, Osuna MD, Heredia A, De Prado R (2005) Lolium rigidum, a pool of resistance mechanisms to ACCase inhibitor herbicides. J Agric Food Chem 53:2185–2191

    Article  PubMed  CAS  Google Scholar 

  • Délye C, Zhang X-Q, Chalopin C, Michel S, Powles SB (2003) An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors. Plant Physiol 132:1716–1723

    Article  PubMed  CAS  Google Scholar 

  • Egli MA, Gengenbach BG, Gronwald JW, Somers DA, Wyse DL (1993) Characterization of maize acetyl-CoA carboxylase. Plant Physiol 101:499–506

    PubMed  CAS  Google Scholar 

  • Evenson KJ, Gronwald JW, Wyse DL (1997) Isoforms of acetyl-coenzyme A carboxylase in Lolium multiflorum. Plant Physiol Biochem 35:265–273

    CAS  Google Scholar 

  • Giménez-Espinosa R, Plaisance KL, Plank DW, Gronwald JW, De Prado R (1999) Propaquizafop absorption, translocation, metabolism, and effect on acetyl-CoA carboxylase isoforms in chickpea (Cicer arietinum L). Pestic Biochem Physiol 65:140–150

    Article  Google Scholar 

  • Gressel J (2002) Molecular biology of weed control. Taylor and Francis, London/New York

    Google Scholar 

  • Gronwald JW (1994) Herbicides inhibiting acetyl-CoA carboxylase. Biochem Soc Trans 22:616–621

    PubMed  CAS  Google Scholar 

  • Gronwald JW, Eberlein CV, Betts KJ, Bareg RJ, Ehlke NJ, Wyse DL (1992) Mechanism of diclofop resistance in an Italian ryegrass (Lolium multiflorum Lam.) biotype. Pestic Biochem Physiol 44:126–139

    Article  CAS  Google Scholar 

  • Guengerich FP (1987) Oxidative cleavage of carboxylic esters by cytochrome P450. J Biol Chem 262:8459–8462

    PubMed  CAS  Google Scholar 

  • Hatzios KK (1997) Regulations of enzymatic systems detoxifying xenobiotics in plants. Kluwer, London

    Google Scholar 

  • Herbert D, Price LJ, Alban C, DeHaye L, Job D, Cole DJ, Pallet KE, Harwood JL (1996) Kinetic studies of two isoforms of acetyl CoA carboxylase from maize leaves. Biochem J 318:997–1006

    PubMed  CAS  Google Scholar 

  • Konishi T, Sasaki Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci USA 91:3598–3603

    Article  PubMed  CAS  Google Scholar 

  • Martín AA, Luna CJ (1990) Bioestadística para la Ciencias de la salud, Ed. Norma, Madrid

    Google Scholar 

  • Menéndez J, De Prado R (1996) Diclofop-methyl cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides. Pestic Biochem Physiol 56:123–133

    Article  Google Scholar 

  • Menéndez J, Jorrrín J, Romera E, De Prado R (1994) Resistance to chlortoluron of a slender foxtail (Alopecurus myosuroides) biotype. Weed Sci 42:340–347

    Google Scholar 

  • Nandula VK, Messersmith CG (2000) Mechanism of wild oat (Avena fatua L.) resistance to imazametabenz-metil. Pestic Biochem Physiol 68:148–155

    Article  CAS  Google Scholar 

  • Nikolau BJ, Ohlrogge JB, Wurtele ES (2003) Plant biotin-containing carboxylases. Arch Biochem Biophys 414:211–222

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe DP, Romesser JA, Leto KJ (1987) Plant cytochromes P450: involvement in herbicide metabolism. In: Saunders JA, Kosak-Channing L, Conn EE (eds) The phytochemical effects on environmental compounds. Plenum Publishing Company, New York, pp 151–173

    Google Scholar 

  • Parker WB, Somers DL, Wyse DL, Keith RA, Gronwald JW, Gengenbach BG (1990) Selection and characterization of sethoxydim-tolerant maize cell cultures. Plant Physiol 92:1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Preston C, Mallory-Smith CA (2001) Biochemical mechanism, inheritance and molecular genetics of herbicide resistance in weeds. In: Powles SB, Shaner DL (eds) Herbicide resistance in world grains. CRC Press, Boca Raton, pp 23–60

    Google Scholar 

  • Sasaki Y, Hakamada K, Suama Y, Nagano Y, Furusama I, Matsumo R (1993) Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem 268:25118–25123

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Konishi T, Nagano Y (1995) The compartmentation of acetyl-CoA carboxylase in plants. Plant Physiol 108:445–449

    PubMed  CAS  Google Scholar 

  • Sherman TD, Vaughn KC, Duke SO (1996) Mechanisms of action and resistance to herbicides. In: Duke SO (ed) Herbicide resistant crops. CRC Press, Boca Raton, pp 14–35

    Google Scholar 

  • Shorrosh BS, Roesler KR, Shintani D, Van De Loo FJ, Ohlrogge JB (1995) Structural analysis, plastid localization and expression of the biotin carboxylase from tobacco. Plant Physiol 108:805–812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dow Agrosciences for supplying chemicals and the Project CO3-187 for supporting this research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Santaella, J., Heredia, A. & Prado, R.D. Basis of selectivity of cyhalofop-butyl in Oryza sativa L.. Planta 223, 191–199 (2006). https://doi.org/10.1007/s00425-005-0075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0075-1

Keywords

Navigation