Skip to main content
Log in

Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The localization and timing of production and emission of scent was studied in different Rosa × hybrida cultivars, focusing on three particular topics. First, it was found that petals represent the major source of scent in R. × hybrida. In heavily scented cultivars, the spectrum and levels of volatiles emitted by the flower broadly correlated with the spectrum and levels of volatiles contained within the petal, throughout petal development. Secondly, analysis of rose cultivars that lacked a detectable scent indicated that the absence of fragrance was due to a reduction in both the biosynthesis and emission of scent volatiles. A cytological study, conducted on scented and non-scented rose cultivars showed that no major difference was visible in the anatomy of the petals either at small magnification in optical sections or in ultrathin sections observed by TEM. In particular, the cuticle of epidermal cells was not thicker in scentless cultivars. Thirdly, using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis was localized in both epidermal layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DMT:

3,5-Dimethoxytoluene

OOMT:

Orcinol O-methyltransferase

TEM:

Transmission electron microscopy

References

  • Adams S, Kunz B, Weidenbörner M (1996) Mycelial deformations of Cladosporium herbarum due to the application of eugenol and carvacrol. J Essent Oil Res 8:535–540

    CAS  Google Scholar 

  • Altenburger R, Matile P (1990) Further observations on rhythmic emission of fragrance in flowers. Planta 180:194–197

    Article  CAS  Google Scholar 

  • Barletta A (1995) Scent makes a comeback. Flora Cult 5:23–25

    Google Scholar 

  • Bergström G, Dobson HEM, Groth I (1995) Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst Evol 195:221–242

    Article  Google Scholar 

  • Caissard JC, Joly C, Bergougnoux V, Hugueney P, Mauriat M, Baudino S (2004) Secretion mechanisms of volatile organic compounds in specialized cells of aromatic plants. Recent Res Dev Cell Biol 2:1–15

    CAS  Google Scholar 

  • Caissard JC, Bergougnoux V, Martin M, Mauriat M, Baudino S (2006) Chemical and histochemical analysis of ‘Quatre Saisons Blanc Mousseux’, a moss rose of the Rosa × damascena group. Ann Bot 97:231–238

    Article  PubMed  CAS  Google Scholar 

  • Channelière S, Rivière S, Scalliet G, Szecsi J, Jullien F, Dolle C, Vergne P, Dumas C, Bendahmane M, Hugueney P, Cock JM (2002) Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett 515:35–38

    Article  PubMed  Google Scholar 

  • Clery RA, Owen NE, Chambers SF, Thornton-Wood SP (1999) An investigation into the scent of carnations. J Essent Oil Res 11:355–359

    CAS  Google Scholar 

  • Comba L, Corbet SA, Hunt H, Outram S, Parker JS, Glover BJ (2000) The role of genes influencing the corolla in pollination of Antirrhinum majus. Plant Cell Environ 23:639–647

    Article  CAS  Google Scholar 

  • Crawford BCW, Nath U, Carpenter R, Coen ES (2004) Cincinnata controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol 135:244–253

    Article  PubMed  CAS  Google Scholar 

  • David R, Carde JP (1964) Coloration différentielle des inclusions lipidiques et terpéniques des pseudophylles du Pin maritime au moyen du réactif nadi. C R Acad Sci Paris 258:1338–1340

    CAS  Google Scholar 

  • Dobson HEM, Bergström G, Groth I (1990) Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb. (Rosaceae). Israel J Bot 39:143–156

    CAS  Google Scholar 

  • Dobson HEM, Danielson EM, Van Wesep ID (1999) Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biol 14:153–166

    Article  Google Scholar 

  • Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of floral scent in Clarkia: nove1 patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961

    Article  PubMed  CAS  Google Scholar 

  • Effmert U, Große J, Röse USR, Ehrig F, Kägi R, Piechulla B (2005) Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae). Am J Bot 92:2–12

    CAS  Google Scholar 

  • Evans RY, Reid MS (1988) Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. J Am Soc Hort Sci 113:884–888

    CAS  Google Scholar 

  • Flamini G, Cioni PL, Morelli I (2003) Differences in the fragrances of pollen, leaves, and floral parts of garland (Chrysanthemum coronarium) and composition of the essential oils from flowerheads and leaves. J Agric Food Chem 51:2267–2271

    Article  PubMed  CAS  Google Scholar 

  • Glover BJ, Martin C (2002) Evolution of adaptive petal cell morphology. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. Taylor and Francis, London, pp 160–172

    Google Scholar 

  • Goodwin SM, Kolosova N, Kish CM, Wood KV, Dudareva N, Jenks MA (2003) Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiol Plant 117:435–443

    Article  PubMed  CAS  Google Scholar 

  • Gorton HL, Vogelmann TC (1996) Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol 112:879–888

    PubMed  CAS  Google Scholar 

  • Grison-Pigé L, Bessière JM, Turlings TCJ, Kjellberg F, Roy, Hossaert-McKey M (2001) Limited intersex mimicry of floral odour in Ficus carica. Funct Ecol 15:551–558

    Article  Google Scholar 

  • Gudin S (2000) Rose: genetics and breeding. Plant Breed Rev 17:159–189

    CAS  Google Scholar 

  • Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang J, Adam Z, Pichersky E, Lewinsohn E, Zamir D, Vainstein A, Weiss D (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338

    Article  PubMed  CAS  Google Scholar 

  • Heath RR, Manukian A (1994) An automated system for use in collecting volatile chemicals released from plants. J Chem Ecol 20:593–608

    Article  CAS  Google Scholar 

  • Hudak KA, Thompson JE (1997) Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals. Plant Physiol 114:705–713

    PubMed  CAS  Google Scholar 

  • Jetter R (2006) Examination of the processes involved in the emission of scent volatiles from flowers. In: Dudareva N, Pichersky E (eds) Biology of floral scent. Informa Healthcare, London, pp 125–144

    Google Scholar 

  • Kay QON, Daoud HS, Stirton CH (1981) Pigment distribution, light reflection and cell structure in petals. Bot J Linn Soc 83:57–84

    CAS  Google Scholar 

  • Kolosova N, Sherman D, Karlson D, Dudareva N (2001) Cellular and subcellular localization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers. Plant Physiol 126:956–964

    Article  PubMed  CAS  Google Scholar 

  • Kovats E (1987) Composition of essential oils Part 7. Bulgarian oil of rose (Rosa damascena Mill.). J Chromatogr 406:185–222

    Article  CAS  Google Scholar 

  • Lavid N, Wang J, Shalit M, Guterman I, Bar E, Beuerle T, Menda N, Shafir S, Zamir D, Adam Z, Vainstein A, Weiss D, Pichersky E, Lewinsohn E (2002) O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol 129:1899–1907

    Article  PubMed  CAS  Google Scholar 

  • Loomis WD, Croteau R (1973) Biochemistry and physiology of lower terpenoids. Recent Adv Phytochem 6:147–185

    CAS  Google Scholar 

  • Loughrin JH, Hamilton-Kemp T, Burton HR, Anderson RA, Hildebrand DF (1992) Glycosidically bound volatile components of Nicotiana sylvestris and N. suaveolens flowers. Phytochemistry 31:1537–1540

    Article  CAS  Google Scholar 

  • MacTavish HS, Menary RC (1997) Volatiles in different floral organs, and effect of floral characteristics on yield of extract from Boronia megastigma (Nees). Ann Bot 80:305–311

    Article  CAS  Google Scholar 

  • Martin JH, Lynn JA, Nichey WM (1966) A rapid polychrome stain for epoxy-embedded tissue. Am J Clin Pathol 46:250–251

    PubMed  CAS  Google Scholar 

  • Martin C, Bhatt K, Baumann K, Jin H, Zachgo S, Roberts K, Schwarz-Sommer Z, Glover B, Perez-Rodrigues M (2002) The mechanics of cell fate determination in petals. Phil Trans Roy Soc Lond B 357:809–813

    Article  CAS  Google Scholar 

  • Nakamura S (1987) Scent and component analysis of the hybrid tea rose. Perfum Flavor 12:43–45

    CAS  Google Scholar 

  • Negre F, Kish CM, Boatright J, Underwood B, Shibuya K, Wagner C, Clark DG, Dudareva N (2003) Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 15:2292–3006

    Article  CAS  Google Scholar 

  • Noda K, Glover BJ, Linstead P, Martin C (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369:661–664

    Article  PubMed  CAS  Google Scholar 

  • Ohloff G (1978) Importance of minor components in flavors and fragrance. Perfum Flavor 3:11–22

    CAS  Google Scholar 

  • Oyama-Okubo N, Ando T, Watanabe N, Marchesi E, Uchida K, Nakayama M (2005) Emission mechanism of floral scent in Petunia axillaris. Biosci Biotechnol Biochem 69:773–7

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae). I Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol 106:1533–1540

    PubMed  CAS  Google Scholar 

  • Picone JM, Clery RA, Watanabe N, MacTavish HS, Turnbull CGN (2004) Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. ‘Quatre Saisons’. Planta 219:468–478

    Article  PubMed  CAS  Google Scholar 

  • Raguso RA, Pichersky E (1999) A day in the life of a linalool molecule: Chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant species Biol 14:95–120

    Article  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  PubMed  CAS  Google Scholar 

  • Scalliet G, Journot N, Jullien F, Baudino S, Magnard JL, Channelière S, Vergne P, Dumas C, Bendahmane M, Cock JM, Hugueney P (2002) Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Lett 523:113–118

    Article  PubMed  CAS  Google Scholar 

  • Scalliet G, Lionnet C, Le Bechec M, Dutronc L, Magnard J-L, Baudino S, Bergougnoux V, Jullien F, Chambrier P, Vergne P, Dumas C, Cock JM, Hugueney P (2006) Role of petal specific orcinol O-methyltransferases in the evolution of rose scent. Plant Physiol 140:18–29

    Article  PubMed  CAS  Google Scholar 

  • Shalit M, Shafir S, Larkov O, Bar E, Kaslassi D, Adam Z, Zamir D, Vainstein A, Weiss D, Ravid U, Lewinsohn E (2004) Volatile compounds emitted by rose cultivars: fragrance perception by man and honeybees. Israel J Plant Sci 52:245–255

    Article  CAS  Google Scholar 

  • Sood S, Vyas D, Nagar PK (2006) Physiological and biochemical studies during flower development in two rose species. Scientia Horticulturae 108:390–396

    Article  CAS  Google Scholar 

  • Stead AD, van Doorn WG, Jones ML, Wagstaff C (2006) Flower senescence: fundamental and applied aspects. In: Ainsworth C (ed) Flowering and its manipulation. Annu Plant Rev, Blackwell, Oxford, vol 20, pp 261–296

  • Stubbs JM, Francis MJO (1971) Electron microscopical studies of rose petal cells during flower maturation. Planta Med 20:211–218

    Article  PubMed  CAS  Google Scholar 

  • Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139:341–352

    Article  PubMed  CAS  Google Scholar 

  • Suire C, Bouvier F, Backhaus RA, Bégu D, Bonneu M, Camara B (2000) Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiol 124:971–978

    Article  PubMed  CAS  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679

    Article  PubMed  CAS  Google Scholar 

  • Vogel S (1962) Duftdrüsen im Dienste der Bestäubung. Über Bau und Funktion der Osmophoren. Akademie der Wissenschaften und der Literatur. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse 10:598–763

    Google Scholar 

  • Weston EL, Pyke KA (1999) Developmental ultrastructure of cells and plastids in the petals of wallflower (Erysimum cheiri). Ann Bot 84:763–769

    Article  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307

    Article  PubMed  CAS  Google Scholar 

  • Yeboah Gyan K, Woodell SRJ (1987) Flowering phenology, flower colour and mode of reproduction of Prunus spinosa L. (Blackthorn); Crataegus monogyna Jacq. (Hawthorn); Rosa canina L. (dog rose); and Rubus fruticosus L. (Bramble) in Oxfordshire, England. Funct Ecol 1:261–268

    Article  Google Scholar 

Download references

Acknowledgments

We thank Isabelle Anselme-Bertrand (Centre de Microscopie Electronique Stéphanois) for her help on the ESEM. We are indebted to Martine Hossaert-McKey (Centre d’Ecologie Fonctionnelle et Evolutive, CNRS, Montpellier) and Marie-Charlotte Anstett (Institut des Sciences de l’Evolution, Université Montpellier 2) for the help with the headspace apparatus. We also thank Frédéric Pautz (Jardin Botanique de la Ville de Lyon), Charles Broizat (Hortirose), Pierre Orard and Meilland Richardier who allowed us to cut roses in their collection. We also would like to thank Florence Gros and David Roujol for technical assistance. This work was supported by the Région Rhône-Alpes, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Baudino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergougnoux, V., Caissard, JC., Jullien, F. et al. Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226, 853–866 (2007). https://doi.org/10.1007/s00425-007-0531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0531-1

Keywords

Navigation