Skip to main content
Log in

Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A tomato (Lycopersicon esculentum Mill.) glycerol-3-phosphate acyltransferase gene (LeGPAT) was isolated. The deduced amino acid sequence revealed that LeGPAT contained four acyltransferase domains, showing high identities with GPAT in other plant species. A GFP fusion protein of LeGPAT was targeted to chloroplast in cowpea mesophyll protoplast. RNA gel blot showed that the mRNA accumulation of LeGPAT in the wild type (WT) was induced by chilling temperature. Higher expression levels were observed when tomato leaves were exposed to 4°C for 4 h. RNA gel and western blot analysis confirmed that the sense gene LeGPAT was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. Although tomato is classified as a chilling-sensitive plant, LeGPAT exhibited selectivity to 18:1 over 16:0. Overexpression of LeGPAT increased total activity of LeGPAT and cis-unsaturated fatty acids in PG in thylakoid membrane. Chilling treatment induced less ion leakage from the transgenic plants than from the WT. The photosynthetic rate and the maximal photochemical efficiency of PS II (Fv/Fm) in transgenic plants decreased more slowly during chilling stress and recovered faster than in WT under optimal conditions. The oxidizable P700 in both WT and transgenic plants decreased obviously at chilling temperature under low irradiance, but the oxidizable P700 recovered faster in transgenic plants than in the WT. These results indicate that overexpression of LeGPAT increased the levels of PG cis-unsaturated fatty acids in thylakoid membrane, which was beneficial for the recovery of chilling-induced PS I photoinhibition in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DGDG:

Digalactosyldiacylglycerol

Fv/Fm:

Maximal photochemical efficiency of PS II

Fo:

Initial fluorescence

Fv:

Variable fluorescence

Fm:

Maximum yield of fluorescence

GPAT:

Glycerol-3-phosphate acyltransferase

LeGPAT :

Lycopersicon esculentum glycerol-3-phosphate acyltransferase gene

MGDG:

Monogalactosyldiacylglycerol

PPFD:

Photosynthetic photon flux density

PG:

Phosphatidylglycerol

PS I (II):

Photosystem I (II)

P700:

PS I reaction center

PVDF:

Polyvinylidene fluoride

SDS-PAGE:

Sodium dodecyl sulfate poly acrylamide gel electrophoresis

SQDG:

sulfoquinovosyldiacylglycerol

16:0:

palmitic acid

16:1:

Δ3-Trans-hexadecenoic acid

18:0:

Stearic acid

18:1:

Oleic acid

18:2:

Linoleic acid

18:3:

Inolenic acid

References

  • Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K (2002) An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol 43:751–758

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Bertrams M, Heinz E (1981) Positional specificity and fatty acid selectivity of purified sn-glycerol-3-phosphate acyltransferase from chloroplasts. Plant Physiol 68:653–657

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principal of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen ZQ, Xu CH, Chen MJ, Xu L, Wang KF, Lin SQ, Kuang TY (1994) Effect of chilling acclimation on thylakoid membrane protein of wheat. Acta Bot Sin 36:423–429

    CAS  Google Scholar 

  • Domonkos I, Malec P, Sallai A, Kovacs L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T, Gombos Z (2004) Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M, Wolter FP (1998) Molecular biology of acyltransferases involved in glycerollipid synthesis. In: Harwood JL (ed) Plant lipid biosynthesis. Cambridge University Press, Cambridge, pp 247–272

    Google Scholar 

  • Frentzen M, Heinz E, Mckeon TA, Stumpf PK (1983) Specificatives and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem 129:625–636

    Google Scholar 

  • Frentzen M, Nishida I, Murata N (1987) Properties of the plastidial acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase from the chilling-sensitive plant Squash (Cucurbita moschata). Plant Cell Physiol 28:1195–1201

    CAS  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43:1456–1464

    Article  PubMed  CAS  Google Scholar 

  • Holsters M, De Waele D, Depicker A (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jordan P, Formme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Kruip J, Karapetyan NV, Terekhova IV, Rögner M (1999) In vitro oligomerization of a membrane protein complex. Liposome-based reconstitution of trimeric photosystem I from isolated monomers. J Biol Chem 274:18181–18188

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771

    Article  PubMed  CAS  Google Scholar 

  • Li XG, Duan W, Meng QW, Zou Q, Zhao SJ (2004) The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. Plant Cell Physiol 45:103–108

    Article  PubMed  CAS  Google Scholar 

  • Lyons JM, Raison JK (1970) A temperature-induced transition in mitochondrial oxidation: contrasts between cold and warm-blooded animals. Comp Biochem Physiol 37:405–411

    Article  CAS  Google Scholar 

  • Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6219–6233

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    PubMed  CAS  Google Scholar 

  • Murata N, Sato N, Takahashi N, Hamazaki Y (1982) Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 23:1071–1079

    CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–712

    Article  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  PubMed  CAS  Google Scholar 

  • Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33:97–132

    Article  CAS  Google Scholar 

  • Sakamoto A, Sulpice R, Hou CX, Kinoshita M, Higashi SI, Kanaseki T, Nonaka H, Moon BY, Murata N (2003) Genetic modification of the fatty acid unsaturation of phosphatidylglycerol in chloroplast alters the sensitivity of tobacco plants to cold stress. Plant Cell Environ 27:99–105

    Article  Google Scholar 

  • Sakurai I, Hagio M, Gombos Z, Tyystjärvi T, Paakkarinen V, Aro EM, Wada H (2003) Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiol 133:1376–1384

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Harbor Laboratory Press, Cold Spring Harbor

  • Schansker G, Srivastava A, Govindjee, Strasser RJ (2003) Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol 30:785–796

    Article  CAS  Google Scholar 

  • Shah K, Russinova E, Gadella TWJ Jr Willemse J, de Vries SC (2002) The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev 16:1707–1720

    Article  PubMed  CAS  Google Scholar 

  • Siegenthaler PA (1998) Molecular organization of acyl lipids in photosynthetic membranes of higher plants. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis. Kluwer, Dordrecht, pp 119–144

    Google Scholar 

  • Siegenthaler PA, Eichenberger W (1984) Structure, function and metabolism of plant lipids. Elsevier, Amsterdam, pp 485–488

    Google Scholar 

  • Somerville C, Browse J (1991) Plant lipids: metabolism, mutants and membranes. Science 252:80–87

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K (1996) Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37:239–247

    CAS  Google Scholar 

  • Sonoike K, Tereshima I (1994) Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus L. Planta 194:287–293

    Article  CAS  Google Scholar 

  • Szalontai B, Kota Z, Nonaka H, Murata N (2003) Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochemistry 42:4292–4299

    Article  PubMed  CAS  Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not system II. Planta 193:300–306

    Article  CAS  Google Scholar 

  • Tjus SE, Moller BL, Scheller HV (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol 116:755–764

    Article  PubMed  CAS  Google Scholar 

  • van Kooten O, Snel JPH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  Google Scholar 

  • Wada H, Murata N (1998) Membrane lipids in Cyanobacteria. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis. Kluwer, Dordrecht, pp 65–81

    Google Scholar 

  • Weber S, Wolter FP, Buck F, Frentzen M, Heinz E (1991) Purification and cDNA sequencing of an oleate-selective acyl-ACP: sn-glycerol-3-phosphate acyltransferase from pea chloroplasts. Plant Mol Biol 17:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Xu YN, Siegenthaler PA (1997) Low temperature treatments induce an increase in the relative content of both linolenic and Δ3-trans-hexadecenoic acids in thylakoid membrane phosphatidylglycerol of squash cotyledons. Plant Cell Physiol 38:611–618

    CAS  Google Scholar 

  • Xu CH, Yu B, Cornish AJ, Froehlich JE, Benning C (2006) Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J 47:296–309

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Paakkarinen V, van Wijk KJ, Aro EM (2000) Biogenesis of the chloroplast-encoded D1 protein: regulation of translation, elongation, insertion, and assembly into photosystem II. Plant Cell 12:1769–1782

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZF, Zou JT (2001) The initial step of the glycerolipid pathway. J Biol Chem 276:41710–41716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the State Key Basic Research and Development Plan of China (2006CB100100) and the Natural Science Foundation of China (30471053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Wei Meng.

Additional information

LeGPAT was submitted to the GenBank databases under accession number DQ459433 (http://www.ncbi.nlm.nih.gov).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, N., Li, M., Zhao, SJ. et al. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226, 1097–1108 (2007). https://doi.org/10.1007/s00425-007-0554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0554-7

Keywords

Navigation