Skip to main content
Log in

Physiological roles of plant glycoside hydrolases

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The functions of plant glycoside hydrolases and transglycosidases have been studied using different biochemical and molecular genetic approaches. These enzymes are involved in the metabolism of various carbohydrates containing compounds present in the plant tissues. The structural and functional diversity of the carbohydrates implies a vast spectrum of enzymes involved in their metabolism. Complete genome sequence of Arabidopsis and rice has allowed the classification of glycoside hydrolases in different families based on amino acid sequence data. The genomes of these plants contain 29 families of glycoside hydrolases. This review summarizes the current research on plant glycoside hydrolases concerning their principal functional roles, which were attributed to different families. The majority of these plant glycoside hydrolases are involved in cell wall polysaccharide metabolism. Other functions include their participation in the biosynthesis and remodulation of glycans, mobilization of energy, defence, symbiosis, signalling, secondary plant metabolism and metabolism of glycolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AGP:

Arabinogalactan protein

DBE:

Starch-debranching enzyme

DIBOA:

2,4-Dihydroxy-1,4-benzoxazin-3-one

DIMBOA:

2,4-Dihydroxy-7-methoxy -1,4-benzoxazin-3-one

CAZY:

Carbohydrate-active enzymes

Endo H:

Endoglucosaminidase

ER:

Endoplasmatic reticulum

IAA:

Indole-3-acetic acid

GE:

β-Glucan elicitor

GEBP:

Glucan elicitor binding protein

GH:

Glycoside hydrolase

GT:

Glycosyltransferase

GUS:

β-d-Glucuronidase

NF:

Nod factor

PG:

Polygalacturonase

PR:

Pathogenesis-related

XET:

Xyloglucan endotransglucosylase

References

  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997

    PubMed  CAS  Google Scholar 

  • Atkinson RG, Schroder R, Hallet I, Cohen D, Macrae EA (2002) Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. Plant Physiol 129:122–133

    PubMed  CAS  Google Scholar 

  • Bachmann M, Keller F (1995) Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. Inter- and intracellular compartmentation. Plant Physiol 109:991–998

    PubMed  CAS  Google Scholar 

  • Beck E, Ziegler P (1989) Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40:95–117

    CAS  Google Scholar 

  • Beintema JJ, Terwisscha van Scheltinga AC (1996) Plant lysozymes. In: Jollès P (ed) Lysozymes: model enzymes in biochemistry and biology. Birkhäuser-Verlag, Basel, pp 75–86

    Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W.H. Freeman, New York

    Google Scholar 

  • Beffa RS, Neuhaus JM, Meins F Jr (1993) Physiological compensation in antisense transformants: specific induction of an ‘ersatz’ glucan endo-1,3-β-glucosidase in plants infected with necrotizing viruses. Proc Natl Acad Sci 90:8792–8796

    PubMed  CAS  Google Scholar 

  • Beffa RS, Hoefer RM, Thomas R, Meins F (1996) Decreased susceptibility to viral disease of β 1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8:1001–1011

    PubMed  CAS  Google Scholar 

  • Boisson M, Gomord V, Audran C, Berger N, Dubreucq B, Granier F, Lerouge P, Faye L, Caboche M, Lepiniec L (2001) Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J 20:1010–1019

    PubMed  CAS  Google Scholar 

  • Boller T, Gehri A, Mauch F, Vögeli U (1983) Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157:22–31

    CAS  Google Scholar 

  • Boller T, Kende H (1979) Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol 63:1123–1132

    PubMed  CAS  Google Scholar 

  • Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerre-Tugaye MT, Pont-Lezica R (2005) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5:212–221

    PubMed  CAS  Google Scholar 

  • Boudart G, Minic Z, Albenne C, Canut H, Jamet E, Pont-Lezica R (2007) Cell wall proteome. In: Samaj S, Thelen J (eds) Plant proteomics. Springer, Berlin, pp 169–185

    Google Scholar 

  • Bowles DJ (1990) Defense-related proteins in higher plants. Annu Rev Biochem 59:873–907

    PubMed  CAS  Google Scholar 

  • Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199

    PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia Solani. Science 254:1194–1197

    PubMed  CAS  Google Scholar 

  • Brunner F, Stintzi A, Fritig B, Legrand M (1998) Substrate specificities of tobacco chitinases. Plant J 14:225–234

    PubMed  CAS  Google Scholar 

  • Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262:1051–1054

    PubMed  CAS  Google Scholar 

  • Buckeridge MS, Dietrich SMC, Lima DU (2000a) Galactomannans as the reserve carbohydrate of legume seeds. In: Gupta AK, Kaur N (eds) Developments in crop science, vol 26. Elsevier Science BV, Amsterdam, pp 283–316

    Google Scholar 

  • Buckeridge MS, Pessoa dos Santos H, Tiné MAS (2000b) Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156

    CAS  Google Scholar 

  • Burn JE, Hurley UA, Birch RJ, Arioli T, Cork A, Williamson RE (2002) The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control. Plant J 32:949–960

    PubMed  CAS  Google Scholar 

  • Burton RA, Farrokhi N, Bacic A, Fincher GB (2005) Plant cell wall polysaccharide biosynthesis: real progress in the identification of participating genes. Planta 221:309–312

    PubMed  CAS  Google Scholar 

  • Carmi N, Zhang GF, Petreikov M, Gao ZF, Eyal Y, Granot D, Schaffer AA (2003) Cloning and functional expression of alkaline α-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant J 33:97–106

    PubMed  CAS  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    PubMed  CAS  Google Scholar 

  • Chen M, Liu X, Wang Z, Song J, Qi Q, Wang PG (2005) Modification of plant N-glycans processing: the future of producing therapeutic protein by transgenic plants. Med Res Rev 25:343–360

    PubMed  CAS  Google Scholar 

  • Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu XL, Knox JP, Bolwell P, Slabas AR (2002) Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23:1754–1765

    PubMed  CAS  Google Scholar 

  • Chrost B, Krupinska K (2000) Genes with homologies to known α-galactosidases are expressed during senescence of barley leaves. Physiol Plant 110:111–119

    CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–856

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125:131–134

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    PubMed  CAS  Google Scholar 

  • Coutinho PM, Stam M, Blanc E, Henrissat B (2003) Why so many carbohydrate-active enzymes related genes in plants? Trends Plant Sci 8:563–565

    PubMed  CAS  Google Scholar 

  • Critchley JM, Zeeman SC, Takaha T, Smith AM, Smith SM (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant J 26:89–100

    PubMed  CAS  Google Scholar 

  • Crombie HJ, Chengappa S, Hellyer A, Reid JSG (1998) A xyloglucan oligosaccharide-active, transglycosylating β-d-glucosidase from the cotyledons of nasturtium (Tropaeolum majus L.) seedlings—purification, properties and characterization of a cDNA clone. Plant J 15:27–38

    PubMed  CAS  Google Scholar 

  • Datta SK, Muthukrishnan S (1999) Pathogenesis-related proteins in plants. CRC, Washington, ISBN 0-8493-0697-3

  • del Campillo E, Bennett AB (1996) Pedicel breakstrength and cellulase gene expression during tomato flower abscission. Plant Physiol 111:813–820

    PubMed  Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    PubMed  CAS  Google Scholar 

  • Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    PubMed  Google Scholar 

  • De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433

    PubMed  Google Scholar 

  • Davies GJ, Henrissat B (2002) Plant glyco-related genomics. Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era. Biochem Soc Trans 30:291–297

    PubMed  CAS  Google Scholar 

  • Doehlert DC, Knutson CA (1991) Two classes of starch debranching enzymes from developing maize kernels. J Plant Physiol 138:566–572

    CAS  Google Scholar 

  • Edwards M, Dea ICM, Bulpin PV, Reid JSG (1985) Xyloglucan (amyloid) mobilisation in the cotyledons of Tropaeolum majus L. seeds following germination. Planta 163:133–140

    CAS  Google Scholar 

  • Escamilla-Trevino LL, Chen W, Card ML, Shih MC, Cheng CL, Poulton JE (2006) Arabidopsis thaliana beta-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides. Phytochemistry 67:1651–1660

    PubMed  CAS  Google Scholar 

  • Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123–201

    Article  PubMed  CAS  Google Scholar 

  • Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40:305–346

    CAS  Google Scholar 

  • Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytologist 161:641–675

    CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    PubMed  CAS  Google Scholar 

  • Fulton LM, Cobbett CS (2003) Two alpha-l-arabinofuranosidase genes in Arabidopsis thaliana are differentially expressed during vegetative growth and flower development. J Exp Bot 54:2467–2467

    PubMed  CAS  Google Scholar 

  • Gachon CM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549

    PubMed  CAS  Google Scholar 

  • Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32:177–191

    CAS  Google Scholar 

  • Geisler-Lee J, Geisler M, Coutinho PM, Segerman B, Nishikubo N, Takahashi J, Aspeborg H, Djerbi S, Master E, Andersson-Gunneras S, Sundberg B, Karpinski S, Teeri TT, Kleczkowski LA, Henrissat B, Mellerowicz EJ (2006) Poplar carbohydrate-active enzymes: gene identification and expression analyses. Plant Physiol 140:946–962

    PubMed  CAS  Google Scholar 

  • Geurts R, Franssen H (1996) Signal transduction in Rhizobium-induced nodule formation. Plant Physiol 112:447–453

    PubMed  CAS  Google Scholar 

  • Goddijn OJM, Smeekens S (1998) Mini-review: sensing trehalose biosynthesis in plants. Plant J 14:143–146

    PubMed  CAS  Google Scholar 

  • González-Carranza ZH, Whitelaw CA, Swarup R, Roberts JA (2002) Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and Arabidopsis. Plant Physiol 128:534–543

    PubMed  Google Scholar 

  • Goujon T, Minic Z, El Amrani A, Lerouxel O, Aletti E, Lapierre C, Joseleau JP, Jouanin L (2003) AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant J 33:677–690

    PubMed  CAS  Google Scholar 

  • Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay JJ, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 14:643–646

    PubMed  CAS  Google Scholar 

  • Hamel F, Boivin R, Tremblay C, Bellamare G (1997) Structural and evolutionary relationships among chitinases of flowering plants. J Mol Evol 44:614–624

    PubMed  CAS  Google Scholar 

  • Hanfrey C, Fife M, Buchanan-Wollaston V (1996) Leaf senescence in Brassica napus: expression of genes encoding pathogenesis-related proteins. Plant Mol Biol 30:597–609

    PubMed  CAS  Google Scholar 

  • Harborne JB, Mabry TJ (1982) The flavonoids: advances in research. Chapman and Hall, London

    Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  • Henrissat B (1998) Glycosidase families. Biochem Soc Trans 26:153–156

    PubMed  CAS  Google Scholar 

  • Henrissat B, Coutinho PM, Davies GJ (2001) A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol 47:55–72

    PubMed  CAS  Google Scholar 

  • Heredia A, Jimenez A, Guillen R (1995) Composition of plant cell walls. Z Lebensm Unters Forsch 200:24–31

    PubMed  CAS  Google Scholar 

  • Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao RP, Bitton F, Caboche M, Cannoot B, Chardakov V, Cognet-Holliger C, Colot V, Crowe M, Darimont C, Durinck S, Eickhoff H, de Longevialle AF, Farmer EE, Grant M, Kuiper MT, Lehrach H, Leon C, Leyva A, Lundeberg J, Lurin C, Moreau Y, Nietfeld W, Paz-Ares J, Reymond P, Rouze P, Sandberg G, Segura MD, Serizet C, Tabrett A, Taconnat L, Thareau V, Van Hummelen P, Vercruysse S, Vuylsteke M, Weingartner M, Weisbeek PJ, Wirta V, Wittink FR, Zabeau M, Small I (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14:2176–2189

    PubMed  CAS  Google Scholar 

  • Hong S, Sexton R, Tucker ML (2000) Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol 123:869–881

    PubMed  CAS  Google Scholar 

  • Hsieh MC, Graham TL (2001) Partial purification and characterization of a soybean β-glucosidase with high specific activity for isoflavone conjugates. Phytochemistry 58:995–1005

    PubMed  CAS  Google Scholar 

  • Ishimizu T, Sasaki A, Okutani S, Maeda M, Yamagishi M, Hase S (2004) Endo-beta-mannosidase, a plant enzyme acting on N-glycan: purification, molecular cloning, and characterization. J Biol Chem 279:38555–38562

    PubMed  CAS  Google Scholar 

  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    PubMed  CAS  Google Scholar 

  • Jakubowska A, Kowalczyk S (2005) A specific enzyme hydrolyzing 6-O(4-O)-indole-3-ylacetyl-beta-d-glucose in immature kernels of Zea mays. J Plant Physiol 162:207–201

    PubMed  CAS  Google Scholar 

  • Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    PubMed  CAS  Google Scholar 

  • Kaushal G, Pastuszak I, Hatanaka KI, Elbein AD (1990a) Purification to homogeneity and properties of glucosidase II from mung bean seedlings and suspension-cultured soybean cells. J Biol Chem 265:16271–16279

    PubMed  CAS  Google Scholar 

  • Kaushal G, Szumilo T, Pastuszak I, Elbein AD (1990b) Purification to homogeneity and properties of mannosidase II from mung bean seedlings. Biochemistry 29:2168–2176

    PubMed  CAS  Google Scholar 

  • Kim JB, Olek AT, Carpita NC (2000) Cell wall and membrane-associated exo-beta-d-glucanases from developing maize seedlings. Plant Physiol 123:471–486

    PubMed  CAS  Google Scholar 

  • Kimura Y, Matsuo S, Tsurusaki S, Kimura M, Hara-Nishimura I, Nishimura M (2002) Subcellular localization of endo-beta-N-acetylglucosaminidase and high-mannose type free N-glycans in plant cell. Biochim Biophys Acta 1570:38–46

    PubMed  CAS  Google Scholar 

  • Kleczkowski K, Schell J (1995) Phytohormones conjugates: nature and function. Crit Rev Plant Sci 14:283–298

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    PubMed  CAS  Google Scholar 

  • Koes RE, Quattrocchino F, Mol JNM (1994) The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16:123–132

    CAS  Google Scholar 

  • Kotake T, Dina S, Konishi T, Kaneko S, Igarashi K, Samejima M, Watanabe Y, Kimura K, Tsumuraya Y (2005) Molecular cloning of a {beta}-galactosidase from radish that specifically hydrolyzes {beta}-(1->3)- and {beta}-(1->6)-galactosyl residues of Arabinogalactan protein. Plant Physiol 138:1563–1576

    PubMed  CAS  Google Scholar 

  • Kotake T, Tsuchiya K, Aohara T, Konishi T, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y (2006) An alpha-l-arabinofuranosidase/beta-d-xylosidase from immature seeds of radish (Raphanus sativus L.). J Exp Bot 57:2353–2362

    PubMed  CAS  Google Scholar 

  • Krammer G, Winterhalter P, Schwab M, Shreier P (2002) Glycosidically bound aroma compounds in the fruits of Prunus species: apricot (P. armeniaca L.), peach (P. persica L.), (P. domestica L. ssp. Syriaca). Postharvest Biol Technol 39:778–781

    Google Scholar 

  • Kwon HK, Yokoyama R, Nishitani K (2005) A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells. Plant Cell Physiol 46:843–857

    PubMed  CAS  Google Scholar 

  • Lashbrook CC (2005) New insights into cell wall disassembly during fruit ripening. Stewart Postharvest Rev 3:1–18

    Google Scholar 

  • Lashbrook CC, Gonzalez-Bosch C, Bennett AB (1994) Two divergent endo-β-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell 6:1485–1493

    PubMed  CAS  Google Scholar 

  • Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed beta-glucosidase. J Biol Chem 270:15789–15797

    PubMed  CAS  Google Scholar 

  • Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-l-arabinofuranosidase and β-d-xylosidase activity. J Biol Chem 278:5377–5387

    PubMed  CAS  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 26:1109–1120

    Google Scholar 

  • Lee RH, Lin MC, Chen SC (2004) A novel alkaline alpha-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol 55:281–295

    PubMed  CAS  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    PubMed  CAS  Google Scholar 

  • Leubner-Metzger G, Meins F Jr (1999) Functions and regulation of plant beta-1,3-glucanases (PR-2). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC, Boca Raton, pp 49–76

    Google Scholar 

  • Leung DWM (1992) Involvement of plant chitinase in sexual reproduction of higher plants. Phytochemistry 31:1899–1900

    CAS  Google Scholar 

  • Lim EK, Baldauf S, Li Y, Elias L, Worrall D, Spencer SP, Jackson RG, Taguchi G, Ross J, Bowles DJ (2003) Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology 13:139–145

    PubMed  CAS  Google Scholar 

  • Limpens E, Bisseling T (2003) Signaling in symbiosis. Curr Opin Plant Biol 6:343–305

    PubMed  CAS  Google Scholar 

  • Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Biotechnology 13:686–691

    CAS  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    PubMed  CAS  Google Scholar 

  • Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci 10:130–137

    PubMed  CAS  Google Scholar 

  • Lotan T, Ori N, Fluhr R (1989) Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1:881–887

    PubMed  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and beta-1,3-glucanase. Plant Physiol 88:936–942

    Article  PubMed  CAS  Google Scholar 

  • Martin I, Dopico B, Munoz FJ, Esteban R, Oomen RJ, Driouich A, Vincken JP, Visser R, Labrador E (2005) In vivo expression of a Cicer arietinum beta-galactosidase in potato tubers leads to a reduction of the galactan side-chains in cell wall pectin. Plant Cell Physiol 46:1613–1622

    PubMed  CAS  Google Scholar 

  • Mega T (2005) Glucose trimming of N-glycan in endoplasmic reticulum is indispensable for the growth of Raphanus sativus seedling (kaiware radish). Biosci Biotechnol Biochem 69:1353–1364

    PubMed  CAS  Google Scholar 

  • Mérida A, Rodriguez-Galan JM, Vincent C, Romero JM (1999) Expression of the granule-bound starch synthase I (Waxy) gene from snapdragon is developmentally and circadian clock regulated. Plant Physiol 120:401–410

    PubMed  Google Scholar 

  • Minic Z, Brown S, De Kouchkovsky Y, Schultze M, Staehelin C (1998) Purification and characterization of a novel chitinase-lysozyme, of another chitinase, both hydrolyzing Rhizobium meliloti Nod factors, and of a pathogenesis-related protein from Medicago sativa roots. Biochem J 332:329–335

    PubMed  CAS  Google Scholar 

  • Minic Z, Do C-T, Rihouey C, Morin H, Lerouge P, Jouanin L (2006) Purification, functional characterization, cloning and identification of mutants of a seed specific arabinan hydrolase in Arabidopsis. J Exp Bot 57:2339–2351

    PubMed  CAS  Google Scholar 

  • Minic Z, Jamet E, Négroni L, der Garabedian PA, Zivy M, Jouanin L (2007) A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolase. Proteomics. J Exp Bot 58:2503–2512

    PubMed  CAS  Google Scholar 

  • Minic Z, Jouanin L (2006) Plant glycoside hydrolases involved in cell wall polysaccharides degradation. Plant Plysiol Biochem 44:435–449

    CAS  Google Scholar 

  • Minic Z, Rihouey C, Do CT, Lerouge P, Jouanin L (2004) Purification and characterization of enzymes exhibiting beta-d-xylosidase activities in stem tissues of Arabidopsis. Plant Physiol 135:867–878

    PubMed  CAS  Google Scholar 

  • Molhoj M, Jorgensen B, Ulvskov P, Borkhardt B (2001) Two Arabidopsis thaliana genes, KOR2 and KOR3, which encode membrane-anchored endo-1,4-beta-d-glucanases, are differentially expressed in developing leaf trichomes and their support cells. Plant Mol Biol 46:263–275

    PubMed  CAS  Google Scholar 

  • Molhoj M, Pagant S, Hofte H (2002) Towards understanding the role of membrane-bound endo-beta-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol 43:1399–406

    PubMed  CAS  Google Scholar 

  • Morimoto S, Harioka T, Shoyama Y 1995 Purification and characterization of flavone-specific β-glucuronidase from callus culture of Scutellaria baicalensis Georgi. Planta 195:535–540

    CAS  Google Scholar 

  • Morimoto S, Tateishi N, Matsuda T, Tanaka H, Taura F, Furuya N, Matsuyama N, Shoyama Y (1998) Novel hydrogen peroxide metabolism in suspension cells of Scutellaria baicalensis Georgi. J Biol Chem 273:12606–12611

    PubMed  CAS  Google Scholar 

  • Müller J, Boller T, Wiemken A (1995) Trehalose and trehalase in plants: recent developments. Plant Sci 112:1–9

    Google Scholar 

  • Müller J, Wiemken A, Aeschbacher RA (1999) Trehalose metabolism in sugar sensing and plant development. Plant Sci 147:37–34

    Google Scholar 

  • Muñoz JA, Coronado C, Pérez-Hormaeche J, Kondorosi A, Ratet P, Palomares AJ (1998) MsPG3, a Medicago sativa polygalacturonase gene expressed during the alfalfa–Rhizobium meliloti interaction. Proc Natl Acad Sci USA 95:9687–9692

    PubMed  Google Scholar 

  • Nagano AJ, Matsushima R, Hara-Nishimura I (2005) Activation of an ER-body-localized beta-glucosidase via a cytosolic binding partner in damaged tissues of Arabidopsis thaliana. Plant Cell Physiol 46:1140–1148

    PubMed  CAS  Google Scholar 

  • Navazio L, Baldan B, Mariani P, Gerwig GJ, Vliegenthart JFG 1996) Primary structure of the N-linked carbohydrate chains of calreticulin from spinach leaves. Glycoconj J 13:977–983

    PubMed  CAS  Google Scholar 

  • Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES (1990) Chitinase, B-1,3-glucanase, osmotin, and extension are expressed in tobacco explants during flower formation. Plant Cell 2:673–684

    PubMed  CAS  Google Scholar 

  • Neuhaus JM, Fritig B, Linthorst HJM, Meins F, Mikkelsen JD, Ryals J (1996) A revised nomenclature for chitinase genes. Plant Mol Biol Rep 14:102–104

    CAS  Google Scholar 

  • Neuhaus JM (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC, Boca Raton, pp 77–105

    Google Scholar 

  • Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Hofte H (1998) A plasma membrane-bound putative endo-1,4-beta-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576

    PubMed  CAS  Google Scholar 

  • Niemeyer HM (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones): defence chemicals in the Gramineae. Phytochemistry 27:3349–3358

    CAS  Google Scholar 

  • Okita TW (1992) Is there an alternative pathway for starch synthesis? Plant Physiol 100:560–564

    PubMed  CAS  Google Scholar 

  • Ohmiya Y, Samejima M, Shiroishi M, Amano Y, Kanda T, Sakai F, Hayashi T (2000) Evidence that endo-1,4-beta-glucanases act on cellulose in suspension-cultured poplar cells. Plant J 24:147–158

    PubMed  CAS  Google Scholar 

  • Ohmiya Y, Takeda T, Nakamura S, Sakai F, Hayashi T (1995) Purification and properties of wall-bound endo-1,4-beta-glucanase from suspension-cultured poplar cells. Plant Cell Physiol 36:607–614

    PubMed  CAS  Google Scholar 

  • Ovtsyna AO, Dolgikh EA, Kilanova AS, Tsyganov VE, Borisov AY, Tikhonovich IA, Staehelin C (2005) Nod factors induce nod factor cleaving enzymes in pea roots. Genetic and pharmacological approaches indicate different activation mechanisms. Plant Physiol 139:1051–1064

    PubMed  CAS  Google Scholar 

  • Owino WO, Ambuko JL, Mathooko FM (2005) New insights into cell wall disassembly during fruit ripening. Stewart Postharvest Rev 1:43–52

    Google Scholar 

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 96:12923–12928

    PubMed  CAS  Google Scholar 

  • Parre E, Geitmann A (2005) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137:274–286

    PubMed  CAS  Google Scholar 

  • Patterson SE (2001) Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol 126:494–500

    PubMed  CAS  Google Scholar 

  • Peng L, Kawagoe Y, Hogan P, Delmer D (2002) Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science 295:147–150

    PubMed  CAS  Google Scholar 

  • Peterbauer T, Lahuta LB, Blochl A, Mucha J, Jones DA, Hedley CL, Gorecki RJ, Richter A (2001) Analysis of raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiol 127:1764–1772

    PubMed  CAS  Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot (Lond) 91:1–12

    CAS  Google Scholar 

  • Queirolo CB, Andrea CS, Niemeyer HM, Couicuera LJ (1983) Inhibition of ATPase from chloroplasts by hydroxamic acid from the Gramineae. Phytochemistry 22:2455–2458

    Google Scholar 

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defence in Brassicaceae. Plant Mol Biol 42:93–113

    PubMed  CAS  Google Scholar 

  • Rayon C, Lerouge P, Faye L (1998) The protein N-glycosylation in plants. J Exp Bot 326:1463–1472

    Google Scholar 

  • Reiter WD (2002) Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 5:536–542

    PubMed  CAS  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    PubMed  CAS  Google Scholar 

  • Rodriguez-Llorente ID, Perez-Hormaeche J, El Mounadi K, Dary M, Caviedes MA, Cosson V, Kondorosi A, Ratet P, Palomares AJ (2004) From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. Plant J 39:587–598

    PubMed  CAS  Google Scholar 

  • Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    PubMed  CAS  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    PubMed  CAS  Google Scholar 

  • Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    PubMed  CAS  Google Scholar 

  • Sampedro J, Sieiro C, Revilla G, Gonzalez-Villa T, Zarra I (2001) Cloning and expression pattern of a gene encoding an alpha-xylosidase active against xyloglucan oligosaccharides from Arabidopsis. Plant Physiol 126:910–920

    PubMed  CAS  Google Scholar 

  • Sander L, Child R, Ulvskov P, Albrechtsen M, Borkhardt B (2001) Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth. Plant Mol Biol 46:469–479

    PubMed  CAS  Google Scholar 

  • Saint-Jore-Dupas C, Nebenfuhr A, Boulaflous A, Follet-Gueye ML, Plasson C, Hawes C, Driouich A, Faye L, Gomord V (2006) Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18:3182–3200

    PubMed  CAS  Google Scholar 

  • Scheible WR, Pauly M (2004) Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr Opin Plant Biol 7:285–295

    PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vogeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    CAS  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    PubMed  CAS  Google Scholar 

  • Schultze M, Staehelin C, Brunner F, Genetet I, Legrand M, Fritig B, Kondorosi E, Kondorosi A (1998) Plant chitinase/lysozyme isoforms show distinct substrate specificity and cleavage site preference towards lipochitooligosaccharide Nod signals. Plant J 16:571–580

    CAS  Google Scholar 

  • Schulz M, Weissenböck G (1987) Partial purification and characterization of a luteolin-triglucuronide-specific β-glucuronidase from rye primary leaves (Secale cereale). Phytochemistry 26:933–937

    CAS  Google Scholar 

  • Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54:525–533

    PubMed  CAS  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    PubMed  CAS  Google Scholar 

  • Sicker D, Frey M, Schulz M, Gierl A (2000) Role of benzoxazinones in the survival strategy of plants. Int Rev Cytol 198:319–347

    PubMed  CAS  Google Scholar 

  • Simmons CR (1994) The physiology and molecular biology of plant 1,3-β-glucanases and 1,3;1,4-β-glucanases. Crit Rev Plant Sci 13:325–387

    CAS  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    PubMed  CAS  Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E, Kondorosi A (1995) Lipo-chitooligosaccharide nodulation signals from Rhizobium meliloti induce their rapid degradation by the host plant alfalfa. Plant Physiol 108:1607–1614

    PubMed  CAS  Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E, Mellor RB, Boller T, Kondorosi A (1994) Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant J 5:319–330

    CAS  Google Scholar 

  • Stolle-Smits T, Beekhuizen JG, Kok MT, Pijnenburg M, Recourt K, Derksen J, Voragen AG (1999) Changes in cell wall polysaccharides of green bean pods during development. Plant Physiol 121:363–372

    PubMed  CAS  Google Scholar 

  • Steele NM, Sulova Z, Campbell P, Braam J, Farkas V, Fry SC (2001) Ten isoenzymes of xyloglucan endotransglycosylase from plant cell walls select and cleave the donor substrate stochastically. Biochem J 355:671–679

    PubMed  CAS  Google Scholar 

  • Strasser R, Schoberer J, Jin C, Glossl J, Mach L, Steinkellner H (2006) Molecular cloning and characterization of Arabidopsis thaliana Golgi alpha-mannosidase II, a key enzyme in the formation of complex N-glycans in plants. Plant J 45:789–803

    PubMed  CAS  Google Scholar 

  • Sturm A, Johnson KD, Szumilo T, Elbein AD, Chrispeels MJ (1987) Subcellular localization of glycosidases and glycosyltransferases involved in the processing of the N-linked oligosaccharides. Plant Physiol 85:741–745

    Article  PubMed  CAS  Google Scholar 

  • Sue M, Ishihara A, Iwamura H (2000a) Purification and characterization of a beta-glucosidase from rye (Secale cereale L.) seedlings. Plant Sci 155:67–74

    PubMed  CAS  Google Scholar 

  • Sue M, Ishihara A, Iwamura H (2000b) Purification and characterization of a hydroxamic acid glucoside beta-glucosidase from wheat (Triticum aestivum L.) seedlings. Planta 210:432–438

    PubMed  CAS  Google Scholar 

  • Sue M, Yamazaki K, Yajima S, Nomura T, Matsukawa T, Iwamura H, Miyamoto T (2006) Molecular and structural characterization of hexameric beta-d-glucosidases in wheat and Rye. Plant Physiol 141:1237–1247

    PubMed  CAS  Google Scholar 

  • Sun Z, Duke SH, Henson CA (1995) The role of pea chloroplast alpha glucosidase in transitory starch degradation. Plant Physiol 108:211–217

    PubMed  CAS  Google Scholar 

  • Suzuki H, Takahashi S, Watanabe R, Fukushima Y, Fujita N, Noguchi A, Yokoyama R, Nishitani K, Nishino T, Nakayama T (2006) An isoflavone conjugate-hydrolyzing beta-glucosidase from the roots of soybean (Glycine max) seedlings. Purification, gene cloning, phylogenetics, and cellular localization. J Biol Chem 281:30251–30259

    PubMed  CAS  Google Scholar 

  • Szumilo T, Kaushal GP, Hori H, Elbein AD (1986) Purification and properties of a glycoprotein processing (-mannosidase from mung bean seedling. Plant Physiol 81:383–389

    PubMed  CAS  Google Scholar 

  • Taylor MA, Ross HA, McRae D, Stewart D, Roberts I, Duncan G, Wright F, Millam S, Davies HV (2000) A potato alpha-glucosidase gene encodes a glycoprotein-processing alpha-glucosidase II-like activity. Demonstration of enzyme activity and effects of down-regulation in transgenic plants. Plant J 24:305–316

    PubMed  CAS  Google Scholar 

  • Tevini M, Steinmuller D (1985) Composition and function of plastoglobuli II Lipid composition of leaves and plastoglobuli during beech leaf senescence. Planta 163:91–96

    CAS  Google Scholar 

  • Thompson DS (2005) How do cell walls regulate plant growth? J Exp Bot 56:2275–2285

    PubMed  CAS  Google Scholar 

  • Tiné MAS, Cortelazzo AL, Buckeridge MS (2000) Xyloglucan mobilisation in cotyledons of developing plantlets of Hymenaea courbaril L. (Leguminosae-Caesalpinoideae). Plant Sci 154:117–126

    PubMed  Google Scholar 

  • Tymowska-Lalanne Z, Kreis M (1998) The plant invertases: physiology, biochemistry and molecular biology. Adv Bot Res 28:71–117

    CAS  Google Scholar 

  • Umemoto N, Kakitani M, Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida I (1997) The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc Natl Acad Sci USA 94:1029–1034

    PubMed  CAS  Google Scholar 

  • Van Hengel AJ, Van Kammen A, De Vries SC (2002) A relationship between seed development, arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol Plant 114:637–644

    PubMed  Google Scholar 

  • Van der Holst PPG, Schlaman HRM, Spaink HP (2001) Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Curr Opin Struct Biol 11:608–616

    PubMed  Google Scholar 

  • Van Damme EJ, Charels D, Roy S, Tierens K, Barre A, Martins JC, Rouge P, Van Leuven F, Does M, Peumans WJ (1999) A gene encoding a hevein-like protein from elderberry fruits is homologous to PR-4 and class V chitinase genes. Plant Physiol 119:1547–1556

    PubMed  Google Scholar 

  • Varki A, Cummings RD, Richard, Esko J, Freeze H, Hart G, Marth J (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Boston

    Google Scholar 

  • Verdoucq L, Moriniere J, Bevan DR, Esen A, Vasella A, Henrissat B, Czjzek M (2004) Structural determinants of substrate specificity in family 1 β-glucosidases: novel insights from the crystal structure of sorghum dhurrinase-1, a plant β-glucosidase with strict specificity, in complex with its natural substrate. J Biol Chem 279:31796–31803

    PubMed  CAS  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus JM, Boller T, Wiemken A (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus Mosseae. Mol Plant Microbe Interact 6:261–264

    CAS  Google Scholar 

  • Vincken JP, Schols HA, Oomen RJ, McCann MC, Ulvskov P, Voragen AG, Visser RG (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789

    PubMed  CAS  Google Scholar 

  • Whetten R, MacKay JJ, Sederoff R (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49:585–609

    PubMed  CAS  Google Scholar 

  • Wingler A, Fritzius T, Wiemken A, Boller T, Aeschbacher R (2000) Trehalose induces the ADP-glucose pyrophosphorylase gene, APL3, and starch synthesis in Arabidopsis. Plant Physiol 124:105–114

    PubMed  CAS  Google Scholar 

  • Wingler A, Purdy S, MacLean JA, Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot 57:391–399

    PubMed  CAS  Google Scholar 

  • Wink M (1999) Introduction: biochemistry, role and biotechnology of secondary metabolism. In: Wink M (ed) Bochemistry of plant secondary metabolism. Annual plant reviews, vol 2. Sheffield Academic and CRC, Sheffield and Boca, pp 1–16

    Google Scholar 

  • Woo KK, Miyazaki M, Hara S, Kimura M, Kimura Y (2004) Purification and characterization of a co(II)-sensitive alpha-mannosidase from Ginkgo biloba seeds. Biosci Biotechnol Biochem 68:2547–2556

    PubMed  CAS  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12:807–812

    CAS  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jørnensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65:293–306

    PubMed  CAS  Google Scholar 

  • Xue J, Lenman M, Falk A, Rask L (1992) The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family. Plant Mol Biol 18:387–398

    PubMed  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121

    PubMed  CAS  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jorgensen B, Naumann CM, Moller BL (2004) Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65:293–306

    PubMed  CAS  Google Scholar 

  • Zeng YC, Elbein AD (1998) Purification to homogeneity and properties of plant glucosidase I. Arch Biochem Biophys 355:26–34

    PubMed  CAS  Google Scholar 

  • Zhu J, Chen S, Alvarez S, Asirvatham VS, Schachtman DP, Wu Y, Sharp RE (2006) Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol 140:311–325

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Dr. Guy Hervé and Leanne Enns for the critical review of the manuscript. I thank two anonymous reviewers for their helpful comments and suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Minic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minic, Z. Physiological roles of plant glycoside hydrolases. Planta 227, 723–740 (2008). https://doi.org/10.1007/s00425-007-0668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0668-y

Keywords

Navigation