Skip to main content
Log in

Degradation analysis of Reactive Red 198 by hairy roots of Tagetes patula L. (Marigold)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Tagetes patula L. (Marigold) hairy roots were selected among few hairy root cultures from other plants tested for the decolorization of Reactive Red 198. Hairy roots of Tagetes were able to remove dye concentrations up to 110 mg L−l and could be successively used at least for five consecutive decolorization cycles. The hairy roots of Tagetes decolorized six different dyes, viz. Golden Yellow HER, Methyl Orange, Orange M2RL, Navy Blue HE2R, Reactive Red M5B and Reactive Red 198. Significant induction of the activity of biotransformation enzymes indicated their crucial role in the dye metabolism. UV–vis spectroscopy, HPLC and FTIR spectroscopy analyses confirmed the degradation of Reactive Red 198. A possible pathway for the biodegradation of Reactive Red 198 has been proposed with the help of GC–MS and metabolites identified as 2-aminonaphthol, p-aminovinylsulfone ethyl disulfate and 1-aminotriazine, 3-pyridine sulfonic acid. The phytotoxicity study demonstrated the non-toxic nature of the extracted metabolites. The use of such hairy root cultures with a high ability for bioremediation of dyes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azinobis, 3-ethylbenzothiazoline-6-sulfonic acid

B5:

Gamborg et al. medium

MS medium:

Murashige and Skoog medium

NADH-DCIP:

Dichlorophenol indophenol

SE:

Standard error

YEB:

Yeast extract broth

References

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  PubMed  CAS  Google Scholar 

  • Carias CC, Novais JM, Martins-Dias S (2006) Are Phragmites australis enzymes involved in the degradation of the textile azo dye acid orange 7. Bioresour Technol 99:243–251

    Article  Google Scholar 

  • Carias CC, Novais JM, Martins-Dias S (2007) Phragmites australis peroxidases role in the degradation of an azo dye. Water Sci Technol 56:263–269

    Article  PubMed  CAS  Google Scholar 

  • Chang JS, Kuo TS, Chao YP, Ho JY, Lin PJ (2000) Azo dye decolorization with a mutant Escherichia coli strain. Biotechnol Lett 22:807–812

    Article  CAS  Google Scholar 

  • Choi YE, Yoon SK, Kee YP (2006) Design of bioreactors for hairy root culture. In: Gupta SD, Ibaraki Y (eds) Focus on biotechnology: plant tissue culture engineering. Springer, The Netherlands, pp 161–172

    Google Scholar 

  • Comprehensive Industry Documents Series on Textile Industry. COINDS-59/1999-2000 Central pollution Control Board, India

  • Coniglio MS, Busto VD, Gonzalez PS, Medina MI, Milrad S, Agostini E (2008) Application of Brassica napus hairy roots cultures for phenol removal from aqueous solutions. Chemosphere 72:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR (2000) Phytoextraction and phytostabilization: technical, economic, and regulatory considerations of the soil-lead issue. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL, pp 359–376

    Google Scholar 

  • Dhakulkar S, Ganapathi TR, Bhargava S, Bapat VA (2005) Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Sci 169:812–818

    Article  CAS  Google Scholar 

  • Dhanve RS, Kalyani DC, Phugare SS, Jadhav JP (2008) Coordinate action of exiguobacterial oxidoreductive enzymes in biodegradation of Reactive Yellow 84A dye. Biodegradation 13:1–8

    Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Google Scholar 

  • Gamborg OK, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Ghodake GS, Telke AA, Jadhav JP, Govindwar SP (2009) Potential of Brassica juncea in order to treat textile effluent contaminated sites. Int J Phytorem 11:297–312

    Article  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots recent trends and applications. Biotechnol Adv 18:1–22

    Article  PubMed  CAS  Google Scholar 

  • Goel A, Kumar G, Payne GF, Dube S (1997) Plant cell biodegradation of a xenobiotic nitrate ester nitroglycerin. Nat Biotechnol 15:174–177

    Article  PubMed  CAS  Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati PK, Gantet P (2008) Hairy roots: a powerful tool for plant biotechnological advances. In: Ramawat KH, Merillon LM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, pp 271–283

    Chapter  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weijel D, Kramer U (2008) Evolution of metal hyper accumulation require cis-regulatory changes and triplication of HMA4. Nature 453:391–396

    Article  PubMed  CAS  Google Scholar 

  • Hatvani N, Mecs I (2001) Production of laccase and manganese peroxidase by Lentinus edodes on malt containing by product of the brewing process. Process Biochem 37:491–496

    Article  Google Scholar 

  • Hernandez GG, Berzunza EA, Concha LC, Miranda-Ham ML (2006) Agrobacterium mediated transient transformation of Marigold (Tagetes erecta). Plant Cell Tiss Org Cult 84:365–368

    Article  Google Scholar 

  • Hu ZB, Du M (2006) Hairy roots and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  • Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP (2007) Decolorization of azo dye Methyl Red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68:394–400

    Article  PubMed  CAS  Google Scholar 

  • Kagalkar AN, Jagatap UB, Jadhav JP, Bapat VA, Govindwar SP (2009) Biotechnological strategies for phytoremediation of the sulphonated azo dye Direct Red 5B using Blumia Malcolmii Hook. Bioresour Technol 100:4104–4110

    Google Scholar 

  • Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye Red RBL by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4641

    Article  PubMed  CAS  Google Scholar 

  • Kramer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    Article  PubMed  CAS  Google Scholar 

  • Kucerova P, in der Wiesche C, Wolter M, Macek T, Zadrazil F, Mackova M (2001) The ability of different plant species to remove polycyclic aromatic hydrocarbons and polychlorinated biphenyls from incubation media. Biotechnol Lett 23:1355–1359

    Article  CAS  Google Scholar 

  • Mackova M, Macek T, Ocenaskova J, Burkhard J, Demnerova K, Pazlarova J (1997) Biodegradation of polychlorinated biphenyls by plant cells. Int Biodeter Biodegrad 39:317–325

    Article  CAS  Google Scholar 

  • Mackova M, Chroma L, Kucerova P, Burkhard J, Demnerova K, Macek T (2001) Some aspects of PCB metabolism by horseradish cells. Int J Phytoremediat 3:401–414

    Article  CAS  Google Scholar 

  • Mehrotra S, Kukreja AK, Khanya SPS, Mishra BN (2008) Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electron J Biotechnol. doi:10.2225/vol11-issue-2fulltext-6

  • Mohandass R, Bhaskar A, Kalavathy S, Devilaksmi S (2007) Biodecolorization and biodegradation of Reactive Blue by Aspergillus sp. Afr J Biotechnol 6:1441–1445

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–479

    Article  CAS  Google Scholar 

  • Nepovim A, Podlipna R, Soudek P, Schroder P, Vanek T (2004) Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase. Chemosphere 57:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Olukanni OD, Osuntoki AA, Gbenle GO (2006) Textile effluent biodegradation potentials of textile effluent-adapted and non-adapted bacteria. Afr J Biotechnol 5:1980–1984

    CAS  Google Scholar 

  • Padmavathiamma PK, Loretta YL (2007) Phytoremediation technology: hyper accumulation metals in plant. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Paszcezynski A, Pasti-Grigsby M, Goszceynski S, Crawford R, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604

    Google Scholar 

  • Paul R, Campanella B (2000) Use of Alfalfa (Medicago sativa L.) to stimulate biodegradation of anthracene in dredging sludges. Inter-COST workshop on bioremediation, COST Action 831, Sorrento, Italy

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of color from textile wastewater using whole bacterial cells: a review. Dyes Pigment 58:179–196

    Article  CAS  Google Scholar 

  • Salokhe MD, Govindwar SP (1999) Effect of carbon source on the biotransformation enzyme in Serratia marcescens. World J Microbiol Biotechnol 15:229–232

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Senan RC, Abraham TE (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium. Aerobic degradation of selected azo dyes by bacterial consortium. Biodegradation 15:275–280

    Article  PubMed  CAS  Google Scholar 

  • Shaffiqu TS, Roy JJ, Nair RA, Abraham TE (2002) Degradation of textile dyes mediated by plant peroxidases. Appl Biochem Biotechnol 102–103:315–326

    Article  PubMed  Google Scholar 

  • Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19:437–444

    Article  PubMed  CAS  Google Scholar 

  • Stiborova M, Hansikova H (1997) Peroxidases from tulip bulbs (Tulipa fosteriana L.) oxidize xenobiotics N-nitrosodimethylamine and N-nitroso-N-methylaniline in vitro. Collect Czech Chem Commun 62:1804–1814

    Article  CAS  Google Scholar 

  • Suresh B, Bais HP, Raghavarao SMS, Ravishankar GA, Ghildyal NP (2005a) Comparative evaluation of bioreactor design using Tagetes patula L. hairy roots as a model system. Process Biochem 40:1509–1515

    Article  CAS  Google Scholar 

  • Suresh B, Sherkhane PD, Kale S, Eapen S, Ravishankar GA (2005b) Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere 61:1288–1292

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan P, Kashyap S, Sharma S (1997) Tagetes: a multipurpose plant. Bioresour Technol 62:29–35

    Article  CAS  Google Scholar 

  • Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

VB expresses gratitude to Council of Scientific and Industrial Research (CSIR), New Delhi, India, for Emeritus Scientist Fellowship. PP is thankful to Shivaji University, Kolhapur, India, for awarding Departmental Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Prafulla Jadhav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, P., Desai, N., Govindwar, S. et al. Degradation analysis of Reactive Red 198 by hairy roots of Tagetes patula L. (Marigold). Planta 230, 725–735 (2009). https://doi.org/10.1007/s00425-009-0980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0980-9

Keywords

Navigation