Skip to main content
Log in

Conditional modulation of NAD levels and metabolite profiles in Nicotiana sylvestris by mitochondrial electron transport and carbon/nitrogen supply

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Environmental controls on leaf NAD status remain poorly understood. Here, we analyzed the effects of two key environmental variables, CO2 and nitrogen, on leaf metabolite profiles, NAD status and the abundance of key transcripts involved in de novo NAD synthesis in wild-type (WT) Nicotiana sylvestris and the CMSII mutant that lacks respiratory complex I. High CO2 and increased N supply both significantly enhanced NAD+ and NADH pools in WT leaves. In nitrogen-sufficient conditions, CMSII leaves were enriched in NAD+ and NADH compared to the WT, but the differences in NADH were smaller at high CO2 than in air because high CO2 increased WT NADH/NAD+. The CMSII-linked increases in NAD+ and NADH status were abolished by growth with limited nitrogen, which also depleted the nicotine and nicotinic acid pools in the CMSII leaves. Few statistically significant genotype and N-dependent differences were detected in NAD synthesis transcripts, with effects only on aspartate oxidase and NAD synthetase mRNAs. Non-targeted metabolite profiling as well as quantitative amine analysis showed that NAD+ and NADH contents correlated tightly with leaf amino acid contents across all samples. The results reveal considerable genotype- and condition-dependent plasticity in leaf NAD+ and NADH contents that is not linked to modified expression of NAD synthesis genes at the transcript level and show that NAD+ and NADH contents are tightly integrated with nitrogen metabolism. A regulatory two-way feedback circuit between nitrogen and NAD in the regulation of N assimilation is proposed that potentially links the nutritional status to NAD-dependent signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AO:

Aspartate oxidase

AOX:

Alternative oxidase

CMS:

Cytoplasmic male sterile

COX:

Cytochrome oxidase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GC–TOF-MS:

Gas chromatography–time of flight-mass spectrometry

HN:

High nitrogen

HPLC:

High-performance liquid chromatography

LN:

Low nitrogen

NaAD:

Nicotinic acid adenine dinucleotide

NAD:

Nicotinamide adenine dinucleotide

NADS:

NAD synthetase

NaMN:

Nicotinic acid mononucleotide

NaMNAT:

Nicotinic acid mononucleotide adenyl transferase

NaPRT:

Nicotinic acid phosphoribosyl transferase

NR:

Nitrate reductase

PRPP:

5′-Phosphoribosyl 1-pyrophosphate

QPRT:

Quinolinate phosphoribosyl transferase

QS:

Quinolinate synthase

RI:

Retention index

RuBP:

Ribulose 1,5-bisphosphate

WT:

Wild type

References

  • Berger F, Ramirez-Hernandez MH, Ziegler M (2004) The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci 29:111–118

    Article  CAS  PubMed  Google Scholar 

  • Bruhn D, Wiskich JT, Atkin OA (2007) Contrasting responses by respiration to elevated CO2 in intact tissue and isolated mitochondria. Funct Plant Biol 34:112–117

    Article  CAS  Google Scholar 

  • Douce R, Neuburger M (1989) The uniqueness of plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 40:371–414

    Article  CAS  Google Scholar 

  • Dutilleul C, Driscoll S, Cornic G, De Paepe R, Foyer CH, Noctor G (2003a) Functional mitochondrial complex I is required for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol 131:264–275

    Article  CAS  PubMed  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu CD, Chétrit P, Foyer CH, De Paepe R (2003b) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226

    Article  CAS  PubMed  Google Scholar 

  • Dutilleul C, Lelarge C, Prioul JL, De Paepe R, Foyer CH, Noctor G (2005) Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol 139:64–78

    Article  CAS  PubMed  Google Scholar 

  • Escobar MA, Geisler DA, Rasmusson AG (2006) Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J 45:775–788

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiration: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484

    Article  CAS  PubMed  Google Scholar 

  • Fritz C, Müller C, Matt P, Feil R, Stitt M (2006) Impact of the C–N status on the amino acid profile in tobacco source leaves. Plant Cell Environ 29:2055–2076

    Article  CAS  PubMed  Google Scholar 

  • Garmier M, Carroll AJ, Delannoy E, Vallet C, Day DA, Small ID, Millar AH (2008) Complex I dysfunction redirects cellular and mitochondrial metabolism in Arabidopsis. Plant Physiol 148:1324–1341

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Casanovas N, Blanc-Betes E, Gonzalez-Meler MA, Azcon-Bieto J (2007) Changes in respiratory mitochondrial machinery and cytochrome and alternative pathway activities in response to energy demand underlie the acclimation of respiration to elevated CO2 in the invasive Opuntia ficus-indica. Plant Physiol 145:49–61

    Article  CAS  PubMed  Google Scholar 

  • Gutierres S, Sabar M, Lelandais C, Chétrit P, Diolez P, Degand H, Boutry M, Vedel F, De Kouchkovsky Y, De Paepe R (1997) Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants. Proc Natl Acad Sci USA 94:3436–3441

    Article  CAS  PubMed  Google Scholar 

  • Hunt L, Lerner F, Ziegler M (2004) NAD––new roles in signalling and gene regulation in plants. New Phytol 163:31–44

    Article  CAS  Google Scholar 

  • Hunt L, Holdsworth MJ, Gray JE (2007) Nicotinamidase activity is important for germination. Plant J 51:341–351

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Gardeström P (1997) Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants. FEBS Lett 412:265–269

    Article  CAS  PubMed  Google Scholar 

  • Kaiser WM, Förster J (1989) Low CO2 prevents nitrate reduction in leaves. Plant Physiol 91:970–974

    Article  CAS  PubMed  Google Scholar 

  • Kaiser WM, Huber SC (1994) Post-translational regulation of nitrate reductase in higher plants. Plant Physiol 106:817–821

    CAS  PubMed  Google Scholar 

  • Kaiser WM, Kandlbinder A, Stoimenova M, Glaab J (2000) Discrepancy between nitrate reduction in intact leaves and nitrate reductase activity in leaf extracts: what limits nitrate reduction in situ? Planta 210:801–807

    Article  CAS  PubMed  Google Scholar 

  • Katoh A, Uenohara K, Akita M, Hashimoto T (2006) Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141:851–857

    Article  CAS  PubMed  Google Scholar 

  • Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Miflin BJ, Wallsgrove RM (1978) Photorespiratory nitrogen cycle. Nature 275:741–743

    Article  Google Scholar 

  • Krömer S (1995) Respiration during photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 46:45–70

    Article  Google Scholar 

  • Liu YJ, Nenes-Nesi A, Wallström SV, Lager I, Michalecka AM, Norberg FEB, Widell S, Fredlund KM, Fernie AR, Rasmusson AG (2009) A redox-mediated modulation of stem bolting in transgenic Nicotiana sylvestris differentially expressing the external mitochondrial NADPH dehydrogenase. Plant Physiol 150:1248–1259

    Article  CAS  PubMed  Google Scholar 

  • Morcuende R, Krapp A, Hurry V, Stitt M (1998) Sucrose feeding leads to increased rates of nitrate assimilation, increased rates of α-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Planta 206:394–409

    Article  CAS  Google Scholar 

  • Noctor G, Novitskaya L, Lea PJ, Foyer CH (2002) Co-ordination of leaf minor amino acid contents in crop species: significance and interpretation. J Exp Bot 53:939–945

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Gakiere B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Bergot G, Thominet D, Mauve C, Lelarge-Trouverie C, Prioul JL (2007) A comparative study of amino acid analysis in leaf extracts by gas chromatography–time of flight-mass spectrometry and high-performance liquid chromatography with fluorescence detection. Metabolomics 3:161–174

    Article  CAS  Google Scholar 

  • Novitskaya L, Trevanion S, Driscoll S, Foyer CH, Noctor G (2002) How does photorespiration modulate leaf amino acids? A dual approach through modelling and metabolite analysis. Plant Cell Environ 25:821–836

    Article  CAS  Google Scholar 

  • Pellny TK, Van Aken O, Dutilleul C, Wolff T, Groten K, Bor M, De Paepe R, Reyss A, Van Breusegem F, Noctor G, Foyer CH (2008) Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris. Plant J 54:976–992

    Article  CAS  PubMed  Google Scholar 

  • Pineau B, Mathieu C, Gérard-Hirne C, De Paepe R, Chétrit P (2005) Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild-type phenotype in the Nicotiana sylvestris CMSII mitochondrial mutant lacking nad7. J Biol Chem 280:25994–26001

    Article  CAS  PubMed  Google Scholar 

  • Priault P, Tcherkez T, Cornic G, De Paepe R, Naik R, Ghashghaie J, Streb P (2006) The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. J Exp Bot 57:3195–3207

    Article  CAS  PubMed  Google Scholar 

  • Priault P, Vidal G, De Paepe R, Ribas-Carbo M (2007) Leaf age-related changes in respiratory pathways are dependent on complex I activity in Nicotiana sylvestris. Physiol Plant 129:152–162

    Article  CAS  Google Scholar 

  • Queval G, Noctor G (2007) A plate-reader method for the measurement of NAD, NADP, glutathione and ascorbate in tissue extracts. Application to redox profiling during Arabidopsis rosette development. Anal Biochem 363:58–69

    Article  CAS  PubMed  Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci USA 101:11506–11510

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic assimilation. Trends Plant Sci 8:546–553

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson AG, Soole KL, Elthon TE (2004) Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu Rev Plant Biol 55:23–39

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  Google Scholar 

  • Rieu I, Powers SJ (2009) Real-time quantitative RT-PCR: design, calculations and statistics. Plant Cell 21:1031–1033

    Article  CAS  PubMed  Google Scholar 

  • Sabar M, De Paepe R, De Kouchkovsky Y (2000) Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol 124:1239–1249

    Article  CAS  PubMed  Google Scholar 

  • Sánchez JP, Duque P, Chua NH (2004) ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. Plant J 38:381–395

    Article  PubMed  Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Article  CAS  PubMed  Google Scholar 

  • Scheible WR, Krapp A, Stitt M (2000) Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ 23:1155–1167

    Article  CAS  Google Scholar 

  • Schippers JHM, Nunes-Nesi A, Apetrei R, Hille J, Fernie AR, Dijkwel PP (2008) The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. Plant Cell 20:2909–2925

    Article  CAS  PubMed  Google Scholar 

  • Skipper L, Campbell WH, Mertens JA, Lowe DJ (2001) Pre-steady-state kinetic analysis of recombinant Arabidopsis NADH:nitrate reductase. Rate-limiting processes in catalysis. J Biol Chem 276:26995–27002

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    Article  CAS  PubMed  Google Scholar 

  • Szal B, Dabrowska Z, Malmberg G, Gardeström P, Rychter A (2008) Changes in energy status of leaf cells as a consequence of mitochondrial genome arrangement. Planta 227:697–706

    Article  CAS  PubMed  Google Scholar 

  • Vanderauwera S, De Block M, Van de Steene N, De Cottet BV, Metzlaff M, Van Breusegem F (2007) Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc Natl Acad Sci USA 104:15150–15155

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, Day DA, Wiskich JT, Vanlerberghe AE, McIntosh L (1995) Alternative oxidase activity in tobacco leaf mitochondria. Dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol 109:353–361

    CAS  PubMed  Google Scholar 

  • Vidal G, Ribas-Carbo M, Garmier M, Dubertret G, Rasmusson AG, Mathieu C, Foyer CH, De Paepe R (2007) Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco. Plant Cell 19:640–655

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Pichersky E (2007) Nicotinamidase participates in the salvage pathway of NAD in Arabidopsis. Plant J 49:1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Mou Z (2009) Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. Plant J 57:302–312

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the French Agence Nationale de la Recherche-Genoplante initiative, project no. GNP0508G and the UK Biotechnology and Biological Sciences Research Council grant BB/C51508X/1. Rothamsted Research receives grant-aided support from the BBSRC (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Noctor.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, J., Pellny, T.K., Mauve, C. et al. Conditional modulation of NAD levels and metabolite profiles in Nicotiana sylvestris by mitochondrial electron transport and carbon/nitrogen supply. Planta 231, 1145–1157 (2010). https://doi.org/10.1007/s00425-010-1117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1117-x

Keywords

Navigation