Skip to main content
Log in

Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 24 March 2011

Abstract

A bHLH (basic helix-loop-helix domain) transcription factor involved in tolerance to Pi starvation was cloned from Zea mays with an RT-PCR coupled RACE approach and named ZmPTF1. ZmPTF1 encoded a putative protein of 481 amino acids that had identity with OsPTF1 in basic region. Real-time RT-PCR revealed that ZmPTF1 was quickly and significantly up-regulated in the root under phosphate starvation conditions. Overexpression of ZmPTF1 in maize improved root development, enhanced biomass both in hydroponic cultures and sand pots, and the plants developed more tassel branches and larger kernels when they were grown in low phosphate soil. Compared with wild type, overexpressing ZmPTF1 altered the concentrations of soluble sugars in transgenic plants, in which soluble sugars levels were lower in the leaves and higher in the roots. Overexpression of ZmPTF1 enhanced the expression of fructose-1,6-bisphosphatase and sucrose phosphate synthase1 participated in sucrose synthesis in the leaves but decreased them in the root, and reduced the expression of genes involved in sucrose catabolism in the roots. The modifications on the physiology and root morphology of the plants enhanced low phosphate tolerance and increased the yield under low phosphate conditions. This research provides a useful gene for transgenic breeding of maize that is tolerant to phosphate deficiency and is helpful for exploring the relationship between sugar signaling and phosphate concentrations in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RACE:

Rapid-amplification of cDNA ends

bHLH:

Basic helix-loop-helix domain

ORF:

Open reading frame

SP:

Sufficient phosphate nutrient solution

LP:

Low phosphate nutrient solution

Pi:

Phosphate

Als :

Acetolactate synthase gene

References

  • Bari R, Pant BD, Stitt M, Scheible WR (2006) Pho2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed  CAS  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+- pyrophosphatase TVP1 improves salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  PubMed  CAS  Google Scholar 

  • Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L (2008) Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. J Exp Bot 59:2479–2497

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  PubMed  CAS  Google Scholar 

  • Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    Article  PubMed  CAS  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    Article  PubMed  CAS  Google Scholar 

  • Franco-Zorrilla JM, Martın AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138:847–857

    Article  PubMed  CAS  Google Scholar 

  • González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) Phosphate transporter traffic facilitator 1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    Article  PubMed  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Ralm C, Swarup R, Woolaway KE, White PJ (2003) Changes in genes expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:1–19

    Article  Google Scholar 

  • Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94:323–332

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  PubMed  CAS  Google Scholar 

  • Hernández G, Ramírez M, Valdés-López O et al (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767

    Article  PubMed  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225:907–918

    Article  PubMed  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  • Li K, Xu Z, Zhang K, Yang A, Zhang J (2007a) Efficient production and characterization for maize inbred lines with low-phosphorus tolerance. Plant Sci 172:255–264

    Article  CAS  Google Scholar 

  • Li K, Xu C, Zhang K, Yang A, Zhang J (2007b) Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics 7:1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Li B, Wei A, Song C, Li N, Zhang J (2008) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol 6:146–159

    Article  CAS  Google Scholar 

  • Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TW (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Lim E, Yu S (1998) Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. J Chemom 273:10120–10131

    CAS  Google Scholar 

  • Mishra B, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE 4:e4502

    Article  PubMed  Google Scholar 

  • Misson J, Raghothama KG, Jain A et al (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips. Proc Natl Acad Sci USA 102:11934–11939

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Rus A, Sharkhuu A et al (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  PubMed  CAS  Google Scholar 

  • Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phosphorus deficiency. J Exp Biol 50:487–497

    CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chimica Acta 27:31–37

    Article  CAS  Google Scholar 

  • Musick GJ, Fairchild ML, Ferguson VL, Zuber MS (1965) A method of measuring root volume in corn (Zea mays L.). Crop Sci 5:601–602

    Article  Google Scholar 

  • Pant B, Buhtz A, Kehr J, Scheible W (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  PubMed  CAS  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of an H+-pyrophosphatase n(H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835

    Article  PubMed  CAS  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signalling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2000) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shi H, Lee B, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis. Nat Biotechnol 21:81–85

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Bio Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Vance CP (2010) Quantitative trait loci, epigenetics, sugars, and microRNAs: quaternaries in phosphate acquisition and use. Plant Physiol 154:582–588

    Article  PubMed  CAS  Google Scholar 

  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T (2003) Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 26:1515–1523

    Article  CAS  Google Scholar 

  • Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F, Shimbo K, Ishikawa M, Shimatani Z, Nagata Y, Hashimoto A, Ohta T, Sato Y, Miyamoto C, Honda S, Kojima K, Sasaki T, Kishimoto N, Kikuchi S, Osaki M (2006) Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 57:2049–2059

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng X (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  PubMed  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by the anthrone. Biochem J 57:508–514

    PubMed  CAS  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Roberta Greenwood (Shandong University, Shandong, China) for her critical reading of the manuscript. This research was supported by National Basic Research Program of China (973 Program,2009CB118400) and Natural Science Foundation of China (No. 30771127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juren Zhang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00425-011-1404-1

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Gao, Q., Liu, Y. et al. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta 233, 1129–1143 (2011). https://doi.org/10.1007/s00425-011-1368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1368-1

Keywords

Navigation