Skip to main content
Log in

Functional analysis of OsPUT1, a rice polyamine uptake transporter

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Polyamines are nitrogenous compounds found in all eukaryotic and prokaryotic cells and absolutely essential for cell viability. In plants, they regulate several growth and developmental processes and the levels of polyamines are also correlated with the plant responses to various biotic and abiotic stresses. In plant cells, polyamines are synthesized in plastids and cytosol. This biosynthetic compartmentation indicates that the specific transporters are essential to transport polyamines between the cellular compartments. In the present study, a phylogenetic analysis was used to identify candidate polyamine transporters in rice. A full-length cDNA rice clone AK068055 was heterologously expressed in the Saccharomyces cerevisiae spermidine uptake mutant, agp2∆. Radiological uptake and competitive inhibition studies with putrescine indicated that rice gene encodes a protein that functioned as a spermidine-preferential transporter. In competition experiments with several amino acids at 25-fold higher levels than spermidine, only methionine, asparagine, and glutamine were effective in reducing uptake of spermidine to 60% of control rates. Based on those observations, this rice gene was named polyamine uptake transporter 1 (OsPUT1). Tissue-specific expression of OsPUT1 by semiquantitative RT-PCR showed that the gene was expressed in all tissues except seeds and roots. Transient expression assays in onion epidermal cells and rice protoplasts failed to localize to a cellular compartment. The characterization of the first plant polyamine transporter sets the stage for a systems approach that can be used to build a model to fully define how the biosynthesis, degradation, and transport of polyamines in plants mediate developmental and biotic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

GABA:

γ-aminobutyric acid

PUT1:

Polyamine uptake transporter1

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Angelini R, Tisi A, Rea G, Chen MM, Botta M, Federico R, Cona A (2008) Involvement of polyamine oxidase in wound healing. Plant Physiol 146:162–167

    Article  PubMed  CAS  Google Scholar 

  • Antognoni F, Pistocchi R, Bagni N (1993) Uptake competition between polyamines and analogues in carrot protoplasts. Plant Physiol Biochem 31:693–698

    CAS  Google Scholar 

  • Antognoni F, Fornale S, Grimmer C, Komor E, Bagni N (1998) Long-distance translocation of polyamines in phloem and xylem of Ricinus communis L. plants. Planta 204:520–527

    Article  CAS  Google Scholar 

  • Aouida M, Anick L, Poulin R, Ramatar D (2005) AGP2 encodes the major permease for high affinity polyamine transport in Saccharomyces cerevisiae. J Biol Chem 280:24267–24276

    Article  PubMed  CAS  Google Scholar 

  • Bagni N, Pistocchi R (1991) Uptake and transport of polyamines and polyamine inhibitors in plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Barlowe C (2003) Signals for COPII-dependent export from the ER: what’s the ticket out? Trends Cell Biol 13:295–300

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    Article  PubMed  CAS  Google Scholar 

  • Carrillo C, Canepa G, Algranati I, Pereira C (2006) Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi. Biochem Biophys Res Commun 344:936–940

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Ortiz-Lopez A, Jung A, Bush DR (2001) ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Plant Physiol 125:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Tao L, Zeng L, Vega-sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol Plant Biol 7:417–427

    CAS  Google Scholar 

  • Chibucos MC, Morris PF (2006) Polyamine levels and kinetic characterization of their uptake in the soybean pathogen Phytophthora sojae. Appl Environ Microbiol 72:3250–3256

    Article  Google Scholar 

  • Cuevas J, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Flegelova H, Haguenauer-Tsapis R, Sychrova H (2006) Heterologous expression of mammalian Na/H antiporters in Saccharomyces cerevisiae. Biochim Biophys Acta 1760:504–516

    Article  PubMed  CAS  Google Scholar 

  • Friedman Ra, Levin N, Altman A (1986) Presence and identification of polyamines in xylem and phloem exudates of plants. Plant Physiol 82:1154–1157

    Article  PubMed  CAS  Google Scholar 

  • Froissard M, Belgareh-Touzé N, Buisson N, Desimone M, Frommer WB, Haguenauer-Tsapis R (2006) Heterologous expression of a plant uracil transporter in yeast: improvement of plasma membrane targeting in mutants of the Rsp5p ubiquitin protein ligase. Biotechnol J 1:308–320

    Article  PubMed  CAS  Google Scholar 

  • Fukomoto GH, Buyus CV (1996) A kinetic characterization of putrescine and spermidine uptake and export in human erythrocytes. Biochim Biophys Acta Biomembr 1282:48–56

    Article  Google Scholar 

  • Gietz D, St. Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  CAS  Google Scholar 

  • Hart JJ, DiTomaso JM, Linscott DL, Kochian LV (1992) Transport interactions between paraquat and polyamines in roots of intact maize seedlings. Plant Physiol 99:1400–1405

    Article  PubMed  CAS  Google Scholar 

  • Hasne M-P, Uhlman B (2005) Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem 280:15188–15194

    Article  PubMed  CAS  Google Scholar 

  • Hsu L, Chiou T, Chen L, Bush D (1993) Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc Natl Acad Sci USA 90:7441–7445

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform 8:460

    Article  Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kurepa J, Smalle J, Montagu MV, Inz D (1998) Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant Cell Physiol 39:987–992

    PubMed  CAS  Google Scholar 

  • Leung J, Karachaliou M, Alves C, Diallinas G, Byrne B (2010) Expression and purification of a functional uric acid-xanthine transporter (UapA). Protein Expr Purif 72:139–146

    Google Scholar 

  • Liu X, Bush DR (2006) Expression and transcriptional regulation of amino acid transporters in plants. Amino Acids 30:113–120

    Article  PubMed  Google Scholar 

  • Marina M, Maiale SJ, Rossi FR, Rivas EI, Gárriz A, Ruiz OA, Pieckenstain FL (2008) Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava. Plant Physiol 147:2164–2178

    Article  PubMed  CAS  Google Scholar 

  • Moschou P, Paschalidis K, Delis I, Andriopoulou A, Lagiotis G, Yakoumakis D, Roubelakis-Angelakis K (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of Gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Google Scholar 

  • Ndayiragije A, Lutts S (2007) Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl. Plant Soil 291:225–238

    Article  CAS  Google Scholar 

  • Obenauer J, Cantley L, Yaffe M (2003) Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641

    Article  PubMed  CAS  Google Scholar 

  • Ohe M, Kobayashi M, Niitsu M, Bagni N, Matsuzaki S (2005) Analysis of polyamine metabolism in soybean seedlings using N-15-labelled putrescine. Phytochemistry 66:523–528

    Article  PubMed  CAS  Google Scholar 

  • Pistocchi R, Bagni N, Creus JA (1987) Polyamine uptake in carrot cell cultures. Plant Physiol 84:374–380

    Article  PubMed  CAS  Google Scholar 

  • Quartley E, Alexandrov A, Mikucki M, Buckner FS, Hol WG, DeTitta GT, Phizicky EM, Grayhack EJ (2009) Heterologous expression of L. major proteins in S. cerevisiae: a test of solubility, purity, and gene recoding. J Struct Funct Genomics 10:233–247

    Article  PubMed  CAS  Google Scholar 

  • Quinet M, Ndayiragije A, Lefevre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2011) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    Article  Google Scholar 

  • Su Y, Frommer W, Ludewig U (2004) Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 136:3104–3113

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tomitori H, Kashiwagi K, Asakawa T, Kakinuma Y, Michael AJ, Igarashi K (2001) Multiple polyamine transport systems on the vacuolar membrane in yeast. Biochem J 353:681–688

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Tomonari Y, Kashiwagi K, Igarashi K (2004) Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae. Biochem Biophys Res Commun 315:1082–1087

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Kashiwagi K, Igarashi K (2007) Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 282:7733–7741

    Article  PubMed  CAS  Google Scholar 

  • van Roermund Carlo WT, Hettema Ewald H, van den Berg M, Henk FT, Wanders Ronald JA (1999) Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J 18:5843–5852

    Article  Google Scholar 

  • Yokota T, Nakayama M, Harasawal I, Sato M, Katsuhara M, Kawabe S (1994) Polyamines, indole-3-acetic acid and abscisic acid in rice phloem sap. Plant Growth Regul 15:125–128

    Google Scholar 

  • Zhang MY, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK, Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134:482–491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Ohio Plant Biotechnology Consortium. We thank Dr. John Gray, University of Toledo, for access to Bio-Rad gene gun system, Chan Ho Park and Dr. GL Wang, Ohio State University, for help with isolation of rice protoplasts, and Dr. Fengyu Li, Bowling Green State University, for help in acquiring microscopy images of transiently expressed onion epidermal cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulangi, V., Phuntumart, V., Aouida, M. et al. Functional analysis of OsPUT1, a rice polyamine uptake transporter. Planta 235, 1–11 (2012). https://doi.org/10.1007/s00425-011-1486-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1486-9

Keywords

Navigation