Skip to main content
Log in

A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA Cycle

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The mitochondrial pyruvate dehydrogenase complex (mtPDC) plays a pivotal role in controlling the entry of carbon into the tricarboxylic acid (TCA) cycle for energy production. This multi-enzyme complex consists of three components: E1, E2, and E3. In Arabidopsis, there are three genes, mtE2-1, mtE2-2, and mtE2-3, which encode the putative mtPDC E2 subunit but how each of them contributes to the total mtPDC activity remains unknown. In this work, we characterized an Arabidopsis mutant, m132, that has abnormal small organs. Molecular cloning indicated that the phenotype of m132 is caused by a mutation in the mtE2-1 gene, which results in a truncation of 109 amino acids at the C-terminus of the encoded protein. In m132, mtPDC activity is only 30% of the WT and ATP production is severely impaired. The mutation in the mtE2-1 gene also leads to the over-accumulation of most intermediate products of the TCA cycle and of all the amino acids for protein synthesis. Our results suggest that, among the three mtE2 genes, mtE2-1 is a major contributor to the function of Arabidopsis mtPDC and that the functional disruption of mtE2-1 profoundly affects plant growth and development, as well as its metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAPS:

Cleaved amplified polymorphic sequences

DAG:

Days after germination

E3BP:

E3-Binding protein

iP:

N6-Isopentenyladenine

mtPDC:

Mitochondrial PDC

MS:

Murashige & Skoog

PDC:

Pyruvate dehydrogenase complex

qRT-PCR:

Quantitative real-time PCR

SSLP:

Simple sequence length polymorphism

TCA:

Tricarboxylic acid

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Camp PJ, Randall DD (1985) Purification and characterization of the pea chloroplast pyruvate dehydrogenase complex. A source of acetyl-CoA and NADH for fatty acid biosynthesis. Plant Physiol 77:571–577

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Gai Y, Liu S, Wang R, Jiang X (2010) Quantitative analysis of cytokinins in plants by high performance liquid chromatography: electronspray ionization ion trap mass spectrometry. J Integr Plant Biol 52:925–932

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP et al (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Gemel J, Randall DD (1992) Light regulation of leaf mitochondrial pyruvate dehydrogenase complex: role of photorespiratory carbon metabolism. Plant Physiol 100:908–914

    Article  PubMed  CAS  Google Scholar 

  • Guan Y, Rawsthorne S, Scofield G, Shaw P, Doonan J (1995) Cloning and characterization of a dihydrolipoamide acetyltransferase (E2) subunit of the pyruvate dehydrogenase complex from Arabidopsis thaliana. J Biol Chem 270:5412–5417

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J et al (2004) Experimental analysis of the Arabidopsis mitochondria proteome highlights signalling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256

    Article  PubMed  CAS  Google Scholar 

  • Hirani TA, Tovar-Méndez A, Miernyk JA, Randall DD (2011) Asp295 stabilize the active-site loop structure of pyruvate dehydrogenase, facilitating phosphorylation of Ser292 by pyruvate dehydrogenase-kinase. Enzyme Res. doi:10.4061/2011/939068

    PubMed  Google Scholar 

  • Ito J, Heazlewood JL, Millar AH (2006) Analysis of the soluble ATP-binding proteome of plant mitochondrial identifies new proteins and nucleotide triphosphate interactions within the matrix. J Proteome Res 5:3459–3469

    Article  PubMed  CAS  Google Scholar 

  • Jan A, Nakamura H, Handa H, Ichikawa H, Matsumoto H et al (2006) Gibberellin regulates mitochondrial pyruvate dehydrogenase activity in rice. Plant Cell Physiol 47:244–253

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838

    Article  PubMed  CAS  Google Scholar 

  • Lee CP, Eubel H, O’Toole N, Millar AH (2008) Heterogeneity of the mitochondrial proteome for photosynthetic and non-photosynthetic Arabidopsis metabolism. Mol Cell Proteomics 7:1297–1316

    Article  PubMed  CAS  Google Scholar 

  • Lernmark U, Gardestrom P (1994) Distribution of pyruvate dehydrogenase complex activities between chloroplasts and mitochondria from leaves of different species. Plant Physiol 106:1633–1638

    PubMed  CAS  Google Scholar 

  • Lin M, Behal R, Oliver DJ (2003) Disruption of plE2, the gene for the E2 subunit of the pyruvate dehydrogenase complex, in Arabidopsis causes an early embryo lethal phenotype. Plant Mol Biol 52:865–872

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Luethy MH, Miernyk JA, Randall DD (1994) The nucleotide and deduced amino acid sequences of a cDNA encoding the E1β-subunit of the Arabidopsis thaliana mitochondrial pyruvate dehydrogenase complex. Biochim Biophys Acta 1187:95–98

    Article  PubMed  CAS  Google Scholar 

  • Luethy MH, Miernyk JA, Randall DD (1995) The mitochondrial pyruvate dehydrogenase complex: nucleotide and deduced amino-acid sequences of a cDNA encoding the Arabidopsis thaliana E1α-subunit. Gene 164:251–254

    Article  PubMed  CAS  Google Scholar 

  • Luethy MH, Miernyk JA, David NR, Randall DD (1996) Plant pyruvate dehydrogenase complexes. In: Patel MS, Roche TE, Harris RA (eds) Alpha-keto acid dehydrogenase complexes. Birkhauser Verlag, Basel, pp 71–99

    Chapter  Google Scholar 

  • Luethy MH, Gemel J, Johnston ML, Mooney BP, Miernyk JA et al (2001) Developmental expression of the mitochondrial pyruvate dehydrogenase complex in pea (Pisum sativum) seedlings. Physiol Plant 112:559–566

    Article  PubMed  CAS  Google Scholar 

  • Lutziger L, Oliver DJ (2001) Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis. Plant Physiol 127:615–623

    Article  PubMed  CAS  Google Scholar 

  • Miernyk JA, Randall DD (1987) Some kinetic and regulatory properties of the pea mitochondrial pyruvate dehydrogenase complex. Plant Physiol 83:306–310

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Knorpp C, Leaver CJ, Hill SA (1998) Plant mitochondria pyruvate dehydrogenase complex: purification and identification of catalytic components in potato. Biochem J 334:571–576

    PubMed  CAS  Google Scholar 

  • Millar AH, Leaver CJ, Hill SA (1999) Characterization of the dihydrolipoamide acetyltransferase of the mitochondrial pyruvate dehydrogenase complex from potato and comparisons with similar enzymes in diverse plant species. Eur J Biochem 264:973–981

    Article  PubMed  CAS  Google Scholar 

  • Montgomery TA, Yoo SJ, Fahlgren N, Gilbert SD, Howell MD et al (2008) AGO-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci USA 105:20055–20062

    Article  PubMed  CAS  Google Scholar 

  • Mooney BP, Miernyk JA, Randall DD (1999) Cloning and characterization of the dihydrolipoamide S-acetyltransferase subunit of the plastid pyruvate dehydrogenase complex (E2) from Arabidopsis. Plant Physiol 120:443–452

    Article  PubMed  CAS  Google Scholar 

  • Mooney BP, Miernyk JA, Randall DD (2002) The complex fate of alpha-ketoacids. Annu Rev Plant Biol 53:357–375

    Article  PubMed  CAS  Google Scholar 

  • Perham RN (1991) Domains, motifs, and linkers in the 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30:8501–8512

    Article  PubMed  CAS  Google Scholar 

  • Qin G, Kang D, Dong Y, Shen Y, Zhang L et al (2003) Obtaining and analysis of flanking sequences from T-DNA transformants of Arabidopsis. Plant Sci 165:941–949

    Article  CAS  Google Scholar 

  • Quint M, Barkawi LS, Fan K, Cohen JD, Gray WM (2009) Arabidopsis IAR4 modulates auxin response by regulating auxin homeostasis. Plant Physiol 150:748–758

    Article  PubMed  CAS  Google Scholar 

  • Rahmattullah M, Gopalakrishnan S, Radke GA, Roche TE (1989) Domain structures of the dihydrolipoyl transacetylase and the protein X components of mammalian pyruvate dehydrogenase complex. J Biol Chem 264:1245–1251

    Google Scholar 

  • Randall DD, Miernyk JA, David NR, Gemel J, Luethy MH (1996) Regulation of leaf mitochondrial pyruvate dehydrogenase complex activity by reversible phosphorylation. In: Shewry PR, Halford NG (eds) Protein phosphorylation in plants. Clarendon Press, Oxford, pp 87–103

    Google Scholar 

  • Reed LJ (2003) A trail of research from lipoic acid to α-keto acid dehydrogenase complex. J Biol Chem 276:38329–38336

    Article  Google Scholar 

  • Reed LJ, Hackert ML (1990) Structure-function relationships in dihydrolipoamide acyltransferase. J Biol Chem 265:8971–8974

    PubMed  CAS  Google Scholar 

  • Rubin P, Randall DD (1977) Purification and characterization of pyruvate dehydrogenase complex from broccoli floral buds. Arch Biochem Biophys 178:342–349

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA et al (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  PubMed  CAS  Google Scholar 

  • Tan H, Yang X, Zhang F, Zheng X, Qu C et al (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol 156:1577–1588

    Article  PubMed  CAS  Google Scholar 

  • Taylor NL, Heazlewood LH, Day DA, Millar AH (2004) Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol 134:838–848

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Miernyk JA, Randall DD (1998) Partial purification and characterization of the maize mitochondrial pyruvate dehydrogenase complex. Plant Physiol 116:1143–1450

    Article  Google Scholar 

  • Thelen JJ, Muszynski MG, David NR, Luethy MH, Elthon TE et al (1999) The dihydrolipoamide S-acetyltransferase subunit of the mitochondria pyruvate dehydrogenase complex from maize contains a single lipoyl domain. J Biol Chem 274:21769–21775

    Article  PubMed  CAS  Google Scholar 

  • Thompson P, Reid EE, Lyttle CR, Dennis DT (1977) Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids: regulation. Plant Physiol 59:842–848

    Article  PubMed  Google Scholar 

  • Tovar-Méndez A, Miernyk JA, Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 270:1043–1049

    Article  PubMed  Google Scholar 

  • Zou J, Qi Q, Katavic V, Marillia EF, Taylor DC (1999) Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA of plant development. Plant Mol Biol 41:837–849

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lijia Qu (Peking University) for providing Arabidopsis T-DNA activation library and Dr. Jianru Zhou (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for insightful discussions about this manuscript. We are grateful to Mr. Yu Tian (Tsinghua University) for assistance on analysis of pyruvate content. This work was supported by the Ministry of Science and Technology of China (Grant no. 2009CB119100 to D. Liu), the National Natural Science Foundation of China (Grant no. 30971554 to X. Du), and the Ministry of Agriculture of China (Grant no. 2009ZX08009-123B to D. Liu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liu.

Additional information

H. Yu, and X. Du contributed equally to this work.

The nucleotide sequence of mtE2-1 gene can be found in the TAIR database under the accession number At3g52200.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Du, X., Zhang, F. et al. A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA Cycle. Planta 236, 387–399 (2012). https://doi.org/10.1007/s00425-012-1620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1620-3

Keywords

Navigation